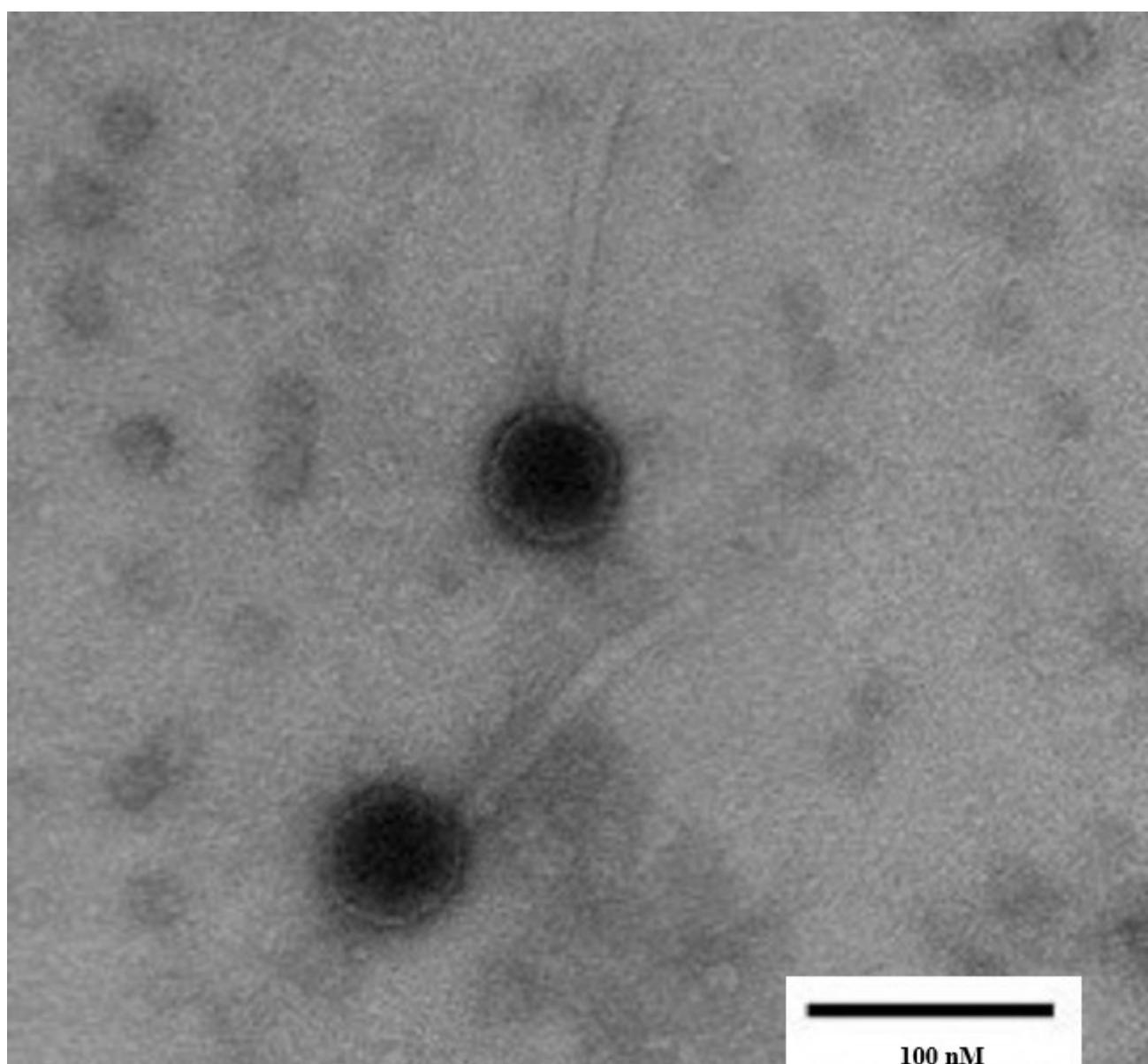


Genome analysis of a cluster EF bacteriophage LordBart isolated from soil in Tennessee.


Sergei Markov^{1§}, Cynthia Fecteau¹, Torrie Jones¹, Matthew Lee¹, Mercedes Thornton¹

¹Biology, Austin Peay State University, Clarksville, Tennessee, United States

§To whom correspondence should be addressed: markovs@apsu.edu

Abstract

Bacteriophage LordBart was isolated from a soil sample in Clarksville, TN using the bacterium *Microbacterium foliorum*. The bacteriophage has a 56,975 bp genome with 86 predicted protein-coding genes, of which 32 were assigned predicted functions. LordBart has a siphovirus morphology and is grouped with bacteriophages in cluster EF based on gene content similarity. Its genome includes eight copies of a conserved 12 bp sequence motif located upstream of predicted translational start codons of some genes of unknown functions.

Figure 1. Transmission electron micrograph of bacteriophage LordBart displaying a siphovirus morphology with an icosahedral capsid of diameter 52 - 54 nM and a 132 - 134 nM long flexible tail (n=6):

Bacteriophage samples were stained using 1% uranyl acetate on grids attached to Pelco Tabs (Ted Peller, Inc., Redding, CA). A Hitachi H-7650 Transmission Electron Microscope (Tokyo, Japan) with an accelerating voltage of 100 kV was used to generate bacteriophage images.

Description

Bacteriophages play important roles in regulating the population of bacteria and have applications in biotechnology and medicine (Jacobs-Sera et al., 2020; Hatfull, 2020; Markov et al. 2024). To broaden our understanding of actinobacteriophage diversity and evolution, we describe the isolation and characterization of bacteriophage LordBart.

The bacteriophage was isolated from moist soil in Clarksville, Tennessee (GPS coordinates 36.608459 N, 87.390453 W) using *Mycobacterium foliorum* NRRL B-24224 as the host and by following standard methods (Russell et al., 2019; Zorawik et al., 2024). The soil sample was collected when the ambient temperature was 19°C and then suspended in peptone-yeast calcium (PYCa) liquid medium for 2 hours. Subsequently, the suspension was passed through a 0.22- μ M-pore filter, and the filtrate was inoculated with *M. foliorum* and incubated with shaking at 250 rpm for 2 days at 30°C. The culture was then filtered again and the filtrate (10 μ L) plated in PYCa top agar with *M. foliorum* and incubated for 2 days at 30°C. After incubation, a plaque was selected and purified through two additional rounds of plating, yielding phage LordBart, which formed clear, round plaques. Transmission electron micrograph of LordBart showed that it has the siphoviral morphology (Fig. 1).

DNA was isolated from a lysate of LordBart using the Wizard DNA Clean-Up Kit (Promega, Madison, WI). It was enzymatically sheared for sequencing using the Ultra II Library Kit (NEB, Ipswich, MA). An Illumina NextSeq 1000 with an XLEAP-P1 Kit was used for DNA sequencing to yield 100-base single-end reads with 2423-fold coverage. Raw reads were trimmed with cutadapt 4.7 (using the option: -nextseq-trim 30), filtered with skewer 0.2.2 (using the options: -q 20 -Q 30 -n -l 50), then assembled using Newbler v2.9 (Russell, 2018). Raw reads were checked for genomic termini and completeness using Conseq v29 (Gordon et al., 1998) as previously described by Russell (2018). The LordBart has a circularly permuted genome DNA of 56,975 bp size with GC content of 62.7%.

Lord Bart's genome was automatically annotated in DNA Master v5.23 (Pope et al., 2018) using Glimmer v3.02 (Delcher et al., 1999) and GeneMark v2.5p (Besemer and Borodovsky 2005). The annotated genes calls were then manually refined using Starterator v485.0 (<http://phages.wustl.edu/starterator>) while putative functions were assigned using Phamerator v393.0 (Cresawn et al., 2011), PECAAN v20211202.0 (<https://blog.kbrinseqd.org/>), BLASTp (Altschul et al., 1990) against the NCBI non-redundant and Actinobacteriophage databases, HHpred v3.2 (Söding et al., 2005) against the PDB_mmCIF70, Pfam v.37.0, and NCBI Conserved Domains databases v3.19. Default parameters were used for all programs. As a result of this annotation process, 86 protein-coding genes were predicted in LordBart, of which putative functions were assigned for 32 genes. Using the gene content similarity of at least 35% to bacteriophages in the Actinobacteriophage database, LordBart was placed in actinobacteriophage cluster EF (Pope et al., 2017; Gauthier and Hatfull 2023).

The LordBart genome contains eight copies of a conserved 12 bp sequence motif 5'-GGGAAGGAACCC before genes 15, 16, 41, 52, 53, 67, 64 and 68, contrary to a previously reported 13 bp motif (5'-GGGAAAGGACCC) for other EF cluster bacteriophages, AnnaSerena and Krampus (Jacobs-Sera et al., 2020). LordBart has this 13 bp motif only before gene 64. The motif is located directly (or a couple of nucleotides away) upstream of predicted translational start codons, such as ATG. This motif may thus be important for regulating bacteriophage gene expression and may also be involved in genome replication. To date, none of the genes directly preceding this motif have known functions.

Data availability

GenBank accession number for LordBart is PV915886 and SRA accession number is SRX28150556.

Acknowledgements: Our study was supported by the Austin Peay State University Department of Biology and the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program of the Howard Hughes Medical Institute. We thank Vic Sivanathan, Billy Biederman, Deborah Jacobs-Sera, Daniel Russell, and Graham Hatfull for their continuing support and to Daniel Russell and Rebecca Garlena for the DNA sequencing. We greatly appreciate Joyce Miller from the Middle Tennessee State University Interdisciplinary Microanalysis and Imaging Center (MIMIC) for assisting with the Transmission Electron Microscopy imaging.

References

- Altschul SF, Gish W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215: 403-410. DOI: [10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)
- Besemer J, Borodovsky M. 2005. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. *Nucleic Acids Research* 33: W451-W454. DOI: [10.1093/nar/gki487](https://doi.org/10.1093/nar/gki487)
- Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. *BMC Bioinformatics* 12: 10.1186/1471-2105-12-395. DOI: [10.1186/1471-2105-12-395](https://doi.org/10.1186/1471-2105-12-395)

1/15/2026 - Open Access

Delcher A. 1999. Improved microbial gene identification with GLIMMER. *Nucleic Acids Research* 27: 4636-4641. DOI: [10.1093/nar/27.23.4636](https://doi.org/10.1093/nar/27.23.4636)

Gauthier CH, Hatfull GF. 2023. PhamClust: a phage genome clustering tool using proteomic equivalence. *mSystems* 8: 10.1128/msystems.00443-23. DOI: [10.1128/msystems.00443-23](https://doi.org/10.1128/msystems.00443-23)

Gordon D, Abajian C, Green P. 1998. *Consed*: A Graphical Tool for Sequence Finishing. *Genome Research* 8: 195-202. DOI: [10.1101/gr.8.3.195](https://doi.org/10.1101/gr.8.3.195)

Hatfull GF. 2020. Actinobacteriophages: Genomics, Dynamics, and Applications. *Annual Review of Virology* 7: 37-61. DOI: [10.1146/annurev-virology-122019-070009](https://doi.org/10.1146/annurev-virology-122019-070009)

Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, et al., Hatfull. 2020. Genomic diversity of bacteriophages infecting *Microbacterium* spp. *PLOS ONE* 15: e0234636. DOI: [10.1371/journal.pone.0234636](https://doi.org/10.1371/journal.pone.0234636)

Markov SA, Atuahene PY, Barnes CW, Butler T, Cooper SD, Covel EM, et al., Wood. 2024. Comparative genome analysis of cluster EF bacteriophages Ajin and OverHedge isolated from soil in Tennessee. *Microbiology Resource Announcements* 13: 10.1128/mra.00925-24. DOI: [10.1128/mra.00925-24](https://doi.org/10.1128/mra.00925-24)

Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D, Montgomery MT, et al., Hatfull. 2017. Bacteriophages of *Gordonia* spp. Display a Spectrum of Diversity and Genetic Relationships. *mBio* 8: 10.1128/mBio.01069-17. DOI: [10.1128/mBio.01069-17](https://doi.org/10.1128/mBio.01069-17)

Pope WH, Jacobs-Sera D. 2017. Annotation of Bacteriophage Genome Sequences Using DNA Master: An Overview. *Methods in Molecular Biology, Bacteriophages* : 217-229. DOI: [10.1007/978-1-4939-7343-9_16](https://doi.org/10.1007/978-1-4939-7343-9_16)

Russell DA. 2017. Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes. *Methods in Molecular Biology, Bacteriophages* : 109-125. DOI: [10.1007/978-1-4939-7343-9_9](https://doi.org/10.1007/978-1-4939-7343-9_9)

Russell DA, Garlena RA, Hatfull GF. 2019. Complete Genome Sequence of *Microbacterium foliorum* NRRL B-24224, a Host for Bacteriophage Discovery. *Microbiology Resource Announcements* 8: 10.1128/mra.01467-18. DOI: [10.1128/MRA.01467-18](https://doi.org/10.1128/MRA.01467-18)

Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. *Nucleic Acids Research* 33: W244-W248. DOI: [10.1093/nar/gki408](https://doi.org/10.1093/nar/gki408)

Zorawik M, Jacobs-Sera D, Freise AC, SEA-PHAGES, Reddi K. 2024. Isolation of Bacteriophages on Actinobacteria Hosts. *Methods in Molecular Biology, Phage Engineering and Analysis* : 273-298. DOI: [10.1007/978-1-0716-3798-2_17](https://doi.org/10.1007/978-1-0716-3798-2_17)

Funding: N/A

Conflicts of Interest: The authors declare that there are no conflicts of interest present.

Author Contributions: Sergei Markov: conceptualization, data curation, investigation, resources, supervision, writing - review editing. Cynthia Fecteau: writing - original draft, investigation. Torrie Jones: formal analysis, writing - original draft. Matthew Lee: formal analysis, writing - original draft. Mercedes Thornton: formal analysis, writing - original draft.

Reviewed By: Anonymous

History: Received November 7, 2025 **Revision Received** December 30, 2025 **Accepted** January 14, 2026 **Published Online** January 15, 2026 **Indexed** January 29, 2026

Copyright: © 2026 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Markov S, Fecteau C, Jones T, Lee M, Thornton M. 2026. Genome analysis of a cluster EF bacteriophage LordBart isolated from soil in Tennessee.. *microPublication Biology*. [10.17912/micropub.biology.001929](https://doi.org/10.17912/micropub.biology.001929)