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Abstract

The increasing quantity of time-series images presents new opportunities for extracting biological insights from data.
Here, we introduce a deep learning framework with a variable input sequence length to predict cell and colony
morphologies. We apply this framework to in silico and in vitro microscopy datasets, evaluating the impact of temporal
data on performance. We find that while performance increases monotonically with increasing in silico training data,
performance is varied in the in vitro case studies. The varying results reflect the intrinsic challenges stochastic, complex
biological systems pose to data-driven modeling, and offer a new method through which we can identify biological
transition points using temporal dynamics.
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Figure 1. FNOs trained on varying temporal input horizons exhibit different performance outcomes:

(a) The deep learning pipeline enables interrogation of the impact of the training window horizon on prediction accuracy.
An ARCADE simulation sequence is shown with gradient colors that correspond with tumor age. A variable input
window W; is passed through an FNO that is trained to predict the final timepoint of the time series, which we term the
prediction horizon P. (b) FNO predictions based on increasing training horizons are shown for three of 500 samples of the
in silico tumor simulation data. The FNO predicts images at the 15th time point based on an input window W; where
1<i<14. The leftmost column shows the ground truth image highlighted in yellow, and each subsequent column shows the
predicted image given a window length W;. Each row corresponds to a unique sample. (c) The test loss (quantified by the
mean squared error, MSE) of in silico simulation data is shown as a function of training window size. Results highlight
nearly monotonic improvement of performance with increased training window horizon. The image in the bottom left
corner is the ground truth of sample 1 in panel b (highlighted in yellow), and notable predictions are shown for select
window horizons. (d) FNO predictions based on increasing training horizons are shown for three of 133 samples of the in
vitro tumor spheroid data. The FNO predicts images at the 12th time point based on an input window W; where 1<i<11.
The leftmost column shows the ground truth image highlighted in yellow, and each subsequent column shows the
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predicted image given a window length W;. Each row corresponds to a unique sample. (e) The test loss (MSE) of in vitro
spheroid images is shown as a function of training window size. Unlike the simulated tumor case study, there are
considerable fluctuations in FNO performance even with an increase in window horizon and temporal information. The
image in the bottom left corner is the ground truth of sample 133 in panel d (highlighted in yellow), and notable
predictions are shown for select window horizons. (f) FNO predictions based on increasing training horizons are shown
for three of 77 samples of the in vitro tumor cell death data. The FNO predicts images at the 16th time point based on an
input window W; where 1<i<15. The leftmost column shows the ground truth image highlighted in yellow, and each
subsequent column shows the predicted image given a window length W;. Each row corresponds to a unique sample. (g)
The test loss (MSE) of individual cell death images is shown as a function of training window size. Results are as variable
as the other in vitro dataset. However, the spikes in test loss seem to derive from noisy backgrounds which contrast with
the pure black of the ground truth. Excluding those poorly performing models, the loss curve is notably more monotonic
than the cultured spheroid one. The image in the bottom left corner is the ground truth (highlighted in yellow) and notable
predictions are shown for select window horizons.

Description

Biological imaging techniques have achieved a high degree of spatial and temporal resolution, situating them as an
important data source alongside *omics data for biological discovery (Bagheri et al., 2022; Kuhn Cuellar et al., 2022). This
increase in high-resolution temporal imaging introduces new opportunities and challenges for analysis to extract insights
from morphological dynamics. Machine learning shows promise in going beyond feature extraction towards learning the
underlying rules governing a system (Soelistyo et al., 2022; Rotem et al., 2024). A better understanding of how temporal
dynamics affect the performance of machine learning models can help uncover the timing of biological processes (Bao et
al., 2025; Toulany et al., 2023) and outline the performance-cost tradeoff curve for generating high temporal resolution
data (Cain et al., 2024; Aceituno et al., 2025). Here, we develop a deep learning model to forecast future morphological
states of three biological systems from time-series images using input sequences of varying lengths to probe how much
temporal information is needed to make accurate predictions about future states. The three systems include: (i) simulated
tumors generated by an agent-based model, (ii) cultured tumor spheroids, and (iii) individual tumor cell death dynamics.

Fourier neural operators (FNOs) are a unique neural network architecture developed for learning dynamics of systems
governed by smooth, continuous processes, and have found success in emulating scientific partial differential equations
(PDEs) (Kovachki et al., 2021). Although FNOs have shown strong performance in forecasting time-series across physical
systems (Kurth et al., 2023; Li et al., 2023; Long et al., 2024), their sensitivity to temporal context, particularly with
biological image data, remains an open question that impacts if and how one might characterize time-dependent biological
processes. In this work, we train FNOs to predict a future state of the system (the final timepoint of the dataset), which we
term the prediction horizon (P), from a preceding image sequence of variable length, W;, the training horizon, where i
refers to the number of time points in the training window (Fig. 1a). We hypothesized that prediction performance would
increase as a function of the training window.

As expected, FNO performance increases monotonically with training window size in the in silico case study (Fig. 1b, c).
Models trained on the simulated tumor dataset accurately predict general emergent properties, such as tumor size and
location; however, more biologically relevant characteristics only appear when the model is trained with greater values of
W;. Specifically, for W;<6, there is no qualitative or quantitative (measured by test loss) improvement. When Wg.i<g,
accurate tumor borders begin to appear. Between Wqg and Wy, the test loss decreases significantly and a clear accurate
shape for the tumor emerges. In cases where W;>10, the predicted tumor has clear borders and the shape becomes
increasingly precise with increasing W;.

When the pipeline is applied to the tumor spheroid dataset, a different trend emerges. The models trained on the in vitro
spheroids exhibit highly variant accuracy (Fig. 1d, e). Qualitatively, predictions with W;>¢g capture finer boundary details
and steadily decrease in test loss as the window size increases. However, the prediction with Wgq deviates from this trend,
exhibiting an unusually high loss. We believe this variation in performance is due to the relatively short time-scale of the
image dataset and the lack of substantial morphological changes over that period. Despite variations in the loss function, a
qualitative assessment of performance points to consistent improvement with increasing Wj, suggesting that pixel-wise
loss may not be a robust metric due to non-biological variations in the background of the predicted images. Nevertheless,
the FNO seems to be learning increasingly more biological features and morphological characteristics of in vitro tumors
with increasing W;.

Having assessed performance in two distinct tumor spheroid datasets, we evaluated the impact of the training window on a
cancer cell death time-lapse dataset with a finer temporal resolution. This system features a distinct biological event (cell
death) that is characterized by a rapid condensing of fluoresced materials. Quantitatively, the test loss (Fig. 1f, g), exhibits
non-monotonicity similar to the tumor spheroid dataset. Despite fluctuations in model performance, the FNO appears to
improve as the training horizon increases. The primary inconsistencies in the loss curve qualitatively align with poor
prediction of the image background, rather than in the prediction of biologically relevant dynamics. Qualitatively, results
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indicate that prediction accuracy for biologically relevant dynamics improves with increasing Wj, as the FNO captures
more accurate cell morphologies. This trend demonstrates that learning temporal dynamics is highly dependent on
biological variance and technical noise, and that qualitative validation should be considered in concert with quantitative
metrics.

In this paper, we introduce a variable training horizon pipeline using FNOs to investigate the complexity of temporal
trends of several biological systems using imaging data. Our results reveal a contrast between simulated and real-world
biological dynamics. The simulated tumor growth model, governed by smooth dynamics, showed a clear monotonic
improvement in prediction accuracy as more temporal information was provided. However, in both the tumor spheroid
and tumor cell death dynamics datasets, increasing the temporal information shows variant, non-monotonic performance
landscapes. Factors that could limit the performance of data-driven models include ineffective sampling of critical
transitions, biological “switches”, and timescales where dynamics can be obscured by biological stochasticity and/or
technical noise. These findings align with recent work suggesting that the loss landscape for auto-regressive prediction in
dynamic systems can be surprisingly uneven (Aceituno et al., 2025), which we find to be exacerbated by the nonlinear
dynamics inherent in biological processes. However, models trained on denoised microscopy images obtained by image
processing methods (e.g., cell segmentation) produce smoother performance landscapes despite occasional outliers. Our
results highlight both a challenge and an opportunity: while data-driven methods struggle with the unpredictability of
biological systems, the model failure points can be used to identify key biological transitions.

Methods

In silico tumor microenvironment simulations. Data was generated using ARCADE, an agent-based model (ABM)
characterizing tumor growth in a heterogeneous and dynamic vascular microenvironment. We simulated 500 tumors under
varying microenvironmental conditions over 15 days, capturing a snapshot of the in silico 2D-slice of tissue every 24
hours. The simulations used for this study are similar to those described in (Yu and Bagheri, 2020).

In vitro cancer spheroid microscopy images. Time-lapse images of tumor spheroids monitor the effects of interface
stiffness on the invasiveness of tumor development (Thi Kim Ngan Ngo, 2022). This dataset contains time-lapse
microscopy of 133 tumor spheroids cultured under varying extracellular matrix stiffness and surface topographies. We
trained models on snapshots of these tumors taken every 2 hours over a period of 24 hours.

In vitro cell death microscopy images. A LNCaP cell line was treated with doxorubicin, a cell death—inducing
compound, and time-lapse images monitored the impact of this treatment (Vicar et al., 2020). The dataset we used spans
24 hours with a frame rate 1 frame per 3 minutes, and a spatial resolution of 1.59 px/pm. We employed StarDist (Schmidt
et al., 2018), a deep learning-based cell segmentation model, to identify individual cell locations. We tracked individual
cell’s location across time frames through a Kalman tracker. The timing of the cell death event was determined from the
fluorescence intensity over time frames where a sharp increase indicates DNA condensation during cell death. We used 1
to 15 time frames prior to the cell death event for the window horizon input and predicted the system morphology 5
frames after the cell death.

Spatiotemporal FNO model architecture. The FNO model was developed with a 3D architecture—2 spatial dimensions
and 1 temporal dimension—to effectively capture the spatiotemporal dynamics of tumor emergence. We implemented the
FNO using the neuraloperator library (Kovachki et al., 2021; Kossaifi et al., 2024), which uses the PyTorch library
(Paszke et al., 2019). Hyperparameters were defined as: modes=(24, 24, 8), layers=8, width=32. Datasets were partitioned
into model training (80%), validation (10%), and test (10%) sets. All images were center-cropped and down-sampled to a
fixed spatial resolution of 128 x 128. Model training minimized the H1 loss using the Adam optimizer (Kingma and Ba,
2017).

Data and code availability. All datasets and code are open and accessible. The deep learning model source code is
available on Zenodo at 10.5281/zenodo.17478675. The ARCADE ABM v2.4 source code (used to generate the synthetic
tumor images) is available on Zenodo at 10.5281/zenodo.10622155. The tumor spheroid and cell death datasets were
previously published (Thi Kim Ngan Ngo, 2022; Vicar et al., 2020).
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