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Abstract

Peripheral blood mononuclear cells (PBMCs) offer a minimally invasive window into systemic biology and immune
dysregulation in Alzheimer’s disease (AD). We performed quantitative proteomic profiling of PBMCs from male and
female AD patients and controls to assess sex differences. AD was associated with proteomic remodeling, with
complement activation, coagulation, and neuronal signaling enriched in males, whereas females showed increased steroid
hormone secretion, lipid metabolism, and acute-phase response with reduced translation and DNA maintenance. Despite
distinct patterns, both sexes exhibited immune and hemostatic activation, underscoring shared systemic mechanisms and
the need for sex-specific biomarkers and therapeutic strategies in AD.
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Figure 1. Differential proteomic analysis and pathway enrichment in PBMCs from Alzheimer's disease (AD)
patients and controls.:

(A—C) Volcano plots showing log?2 fold change versus —log10 low p-value for proteins detected in comparisons of AD
male vs. control male (A), AD female vs. control female (B), and AD male vs. AD female (C). Numbers of upregulated,
downregulated, and unchanged proteins are indicated. (D, F and H) Gene Ontology Biological Process (GOBP)
enrichment plots for significantly regulated proteins in the same comparisons. (E, G and I) KEGG pathway enrichment
plots for the corresponding comparisons. Analyses were performed using the iDEP 2.1 web-based platform. Significance
of enrichment was defined as FDR < 0.1 based on adjusted p-values, and normalized enrichment scores (NES) were used
to rank pathways.

Description

AD is primarily a central nervous system disorder, and systemic immune alterations contribute substantially to its
pathogenesis (Bettcher et al., 2021; Heneka et al., 2015; Van Eldik et al., 2016). PBMCs, which include lymphocytes and
monocytes, reflect immune status and inflammatory signaling in the body and can mirror aspects of brain pathology.
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Studies have shown that PBMCs from AD patients exhibit changes in gene expression (Fiala et al., 2007), cytokine
production (Pellicano et al., 2010), oxidative stress responses (Mecocci et al., 2002), and proteomic profiles, making them
a minimally invasive surrogate for detecting peripheral and potentially central alterations. In this study, we performed
proteomic analysis of PBMCs from male and female AD patients and from age-matched male and female controls with
incidental age-related pathology (n = 6 to 8) to explore sex specific peripheral proteomic alterations in AD. Differential
expression and pathway analyses were performed using iDEP v2.01 (Ge, 2021; Wu et al., 2025), an integrated web-based
platform for omics data exploration. Differential expression analysis with lenient thresholds (raw p value < 0.1, Fold
Change > 1.5) identified 53 upregulated and 106 downregulated proteins in AD males compared with male controls
(Figure 1A, Extended Data 1), whereas AD females exhibited 191 upregulated and 370 downregulated proteins compared
with female controls (Figure 1B). Direct comparison of AD males and females identified 103 proteins upregulated in
males and 56 upregulated in females (Figure 1C).

Pathway analyses were performed using Gene Set Enrichment Analysis (GSEA) (Alhamdoosh et al., 2017). Normalized
enrichment scores (NES) are reported, and pathways with FDR < 0.1 were considered statistically significant, revealing
both shared and sex-specific biological signatures in AD. In AD males, Gene Ontology Biological Process (GO BP)
analysis indicated enrichment of pathways involved in neural signaling (e.g., presynaptic localization, axonal protein
transport, serotonin receptor signaling), as well as coagulation and complement activation, suggesting AD-associated
alterations in both neuronal and immune-related processes (Figure 1D). KEGG analysis further identified hormone
signaling pathways as upregulated, while DNA replication and repair pathways were suppressed, in addition to alterations
in neuronal and immune pathways (Figure 1E).

In AD females, by contrast, the most pronounced changes included steroid hormone secretion, lipoprotein particle
clearance, acute-phase response, and complement activation (Figure 1F). KEGG analysis further highlighted upregulation
of steroid hormone-related signaling, lipid and carbohydrate metabolism (galactose, nitrogen, starch, and sucrose),
cholesterol metabolism, and complement and coagulation cascades (Figure 1G). Despite these sex-specific emphases,
males and females exhibited enrichment of complement activation, coagulation cascades, and extracellular matrix (ECM)
receptor interaction pathways. Notably, proteins involved in DNA replication, repair, ribosome, and spliceosome pathways
were broadly downregulated in female AD, whereas male AD showed less pronounced suppression of these processes.

A direct comparison of AD males versus AD females revealed divergent biological programs. GO BP terms enriched in
males included granzyme-mediated cell death, p53-mediated signaling, vesicle fusion and presynapse organization, and
ribosomal subunit assembly, whereas females showed enrichment of cholesterol storage, eosinophil migration, and
developmental/behavioral regulation (Figure 1H). KEGG pathways upregulated in males included pathogen-related
infections, neutrophil extracellular trap formation, systemic lupus erythematosus, spliceosome, and ribosome, while
females were enriched for cytokine and cytokine receptor interaction and viral protein interaction with cytokine and
cytokine receptor (Figure 1I). These results show sex dependent differences in PBMC biology, which may influence how
peripheral changes are linked to AD pathology.

Our findings show that PBMCs from AD patients show sex-dependent changes in protein expression, with some
alterations shared between males and females and others unique to each sex. In males, AD was associated with enrichment
of neuronal and immune-related pathways and modest suppression of DNA replication and repair. This pattern suggests
that male PBMCs are biased toward immune and hemostatic activation and immunosenescence, consistent with vascular
dysfunction and complement dysregulation reported in AD (Haage & De Jager, 2022; Mehta & Mehta, 2023; Rodrigues et
al.,, 2021). In contrast, females showed prominent activation of steroid hormone secretion, lipid metabolism, and
complement pathways, accompanied by marked downregulation of DNA replication, repair, and ribosomal functions.
These results suggest that female PBMCs display increased metabolic and inflammatory responsiveness but reduced
translational and genomic maintenance capacity, reflecting systemic stress and proteostasis imbalance. Complement
activation, coagulation, and ECM-receptor interaction pathways shared between males and females represent common
systemic features of AD (Haytural et al., 2021; Kodam et al., 2023), reflecting coordinated immune, hemostatic, and
structural remodeling processes. Direct comparison between the sexes revealed that AD males preferentially upregulate
cytotoxic and translational immune programs, including granzyme-mediated cell death and ribosomal and spliceosome
activity, while AD females show cytokine signaling and lipid-related processes. This alteration may be driven by
hormonal, metabolic, and immune regulatory mechanisms, and could underlie differences in AD susceptibility,
progression, and therapeutic responses between men and women. Taken together, the data show potential sex dependence
in peripheral AD biology, and our findings suggest that a single biomarker panel may be inadequate and that early
diagnostic biomarkers may need development on a sex specific basis to capture the dominant biology in each group.
Larger and longitudinal cohorts, cell type resolved proteomics, and analyses that combine PBMC with brain and plasma
datasets will test generalizability and refine sex informed strategies for diagnosis and treatment.

Methods
Human PBMCs
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Human peripheral blood mononuclear cells (PBMCs) were obtained from Banner Health. PBMCs from Alzheimer's
disease (AD) patients were collected from individuals aged 52 years or older. Age-matched control samples were obtained
from individuals aged 71 years or older.

Quantitative Proteomics

Proteins were reduced, alkylated, and subjected to chloroform/methanol extraction before enzymatic digestion with
sequencing-grade modified trypsin (Promega). The resulting peptides were separated on a reverse-phase Ion-Opticks-TS
analytical column (25 cm % 75 pm, 1.7 pm C18 resin) coupled to an EASY-Spray source maintained at 60°C. Samples
were loaded onto a PepMap Neo trap column (300 pm x 5 mm) using a Vanquish Neo UHPLC system (Thermo
Scientific) at 11°C before injection. Peptides were resolved over a 35-min gradient at 0.35 pL/min, starting from 98%
buffer A (0.1% formic acid, 0.5% acetonitrile in water) and 2% buffer B (80% acetonitrile, 20% water, 0.1% formic acid),
with stepwise increases to 56:44 at 27.1 min, followed by column washing and re-equilibration. Eluted peptides were
ionized at 2.5 kV and analyzed on an Orbitrap Astral mass spectrometer (Thermo Scientific) operated in DIA mode. MS1
spectra were collected across 380-980 Th at 240,000 resolutions with a normalized AGC target of 200% and a maximum
injection time of 3 ms. DIA scans consisted of 199 windows (3 Th each) with 25% HCD collision energy, normalized
AGC target of 100%, and maximum injection time of 3 ms. MS2 spectra were acquired from 150-2000 Th with the RF
lens set at 40%.

Data Processing and Statistical Analysis

Spectral data were processed in Spectronaut (Biognosys v19.5) against the UniProt Homo sapiens reference proteome
(UP000005640, release 2025) using the directDIA workflow. A 1% precursor and protein-level g-value cutoff was
applied, with decoys generated for FDR control. Protein inference was performed with the IDPicker algorithm, using
MS2-level quantification and median peptide/precursor intensities (Searle et al., 2018). Protein MS2 intensity values were
assessed for quality using ProteiNorm (Graw et al., 2020). The data were normalized using VSN (Huber et al., 2002) and
analyzed using proteoDA to perform statistical analysis using Linear Models for Microarray Data (limma package
(Ritchie et al., 2015)) with empirical Bayes (eBayes) smoothing to the standard errors (Chawade et al., 2014; Thurman et
al., 2023).

Data Availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD070232.
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Extended Data

Description: This table lists proteins identified by the proteomic analysis and their differential expression between
experimental groups. For each protein, the table includes gene symbols, log2 fold change values, and p-values used for
differential expression analysis.. Resource Type: Dataset. File: Extended Data 1 Differentially expressed proteins
identified by mass spectrometry.xlsx. DOI: 10.22002/489mp-pkw86
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