

The immunoglobulin domain of *C. elegans* IGEG-2/EGF is required for its function

Darlene Mendez¹, Marine Barsegyan¹, Cheryl Van Buskirk^{1§}

¹Biology, California State University, Northridge, Northridge, California, United States

Abstract

Epidermal Growth Factor (EGF) family ligands mediate signaling events in development and physiology across species. These ligands are transmembrane proteins that undergo ectodomain shedding to release the soluble EGF domain, which mediates interaction with EGF receptors (EGFR). Some EGF ligand ectodomains also contain an immunoglobulin-like domain (IgD), and the function of this domain within Ig-EGFs varies. *C. elegans* IGEG-2 is an EGFR ligand of unknown function, identified and named for its Ig and EGF domains. The EGF domain appears to be functional, as widespread expression of IGEG-2 produces phenotypes associated with EGFR hyperactivation. Here we use these phenotypes to investigate the contribution of the IGEG-2 IgD, and we find it to be essential for IGEG-2/EGF signaling. The mechanism underlying this strict IgD dependence is not known.

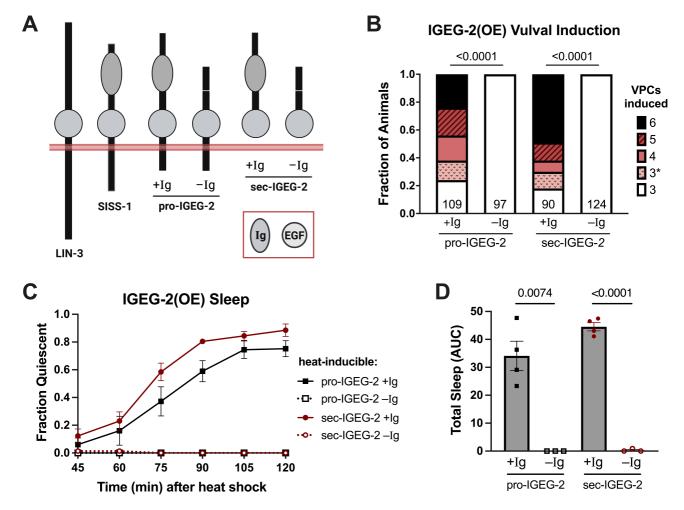


Figure 1. The Ig domain of IGEG-2/EGF is required for EGF(OE) vulval induction and sleep:

(A) Domain structures of the <u>IGEG-2</u> constructs examined in this study, compared to the <u>C. elegans</u> EGFR ligands <u>LIN-3</u> and <u>SISS-1</u>. Ig = immunoglobulin-like domain. EGF = Epidermal Growth Factor-like domain. **(B)** Number of vulval precursor cells (VPCs) induced to adopt a vulval fate following overexpression (OE) of the <u>IGEG-2</u> constructs depicted in panel A. Transgene expression was induced at the L2 larval stage and VPC induction was inferred by examination of vulval morphology in L4 larvae. 3* represents animals with an excess of primary-fated cells among P5.p-P7.p, with no additional VPCs induced. Numbers at the base of each bar indicate how many animals were examined. P values were determined by two-tailed Fisher's exact tests comparing 3 VPCs vs. hyperinduced (all other categories combined). **(C)**

[§]To whom correspondence should be addressed: cheryl.vanbuskirk@csun.edu

10/23/2025 - Open Access

Time course of fraction of animals quiescent following transgene induction at the young adult stage. At least three trials of 25 animals per genotype were performed. **(D)** Total transgene-induced quiescence (area under curve, AUC) for data shown in panel C. P values were determined by unpaired t-tests with Welch's correction for unequal variances.

Description

<u>Caenorhabditis elegans</u> possesses three known ligands of the Epidermal Growth Factor (EGF) family, encoded by <u>lin-3</u> (Hill & Sternberg 1992), siss-1 (Hill et al. 2024), and igeg-2 (Mailhot et al. 2025). LIN-3 mediates several signaling events including the induction of vulval cell fates, wherein LIN-3 released by the gonadal anchor cell activates LET-23/EGFR within three of six multipotent vulval precursor cells, or VPCs (Moghal & Sternberg 2003). Transgenic overexpression of LIN-3 during mid-larval development leads to hyperinduction, with up to six VPCs adopting vulval fates (Katz et al. 1995). A second EGFR ligand, SISS-1, appears to be released from a range of tissues in response to cellular damage to activate LET-23/EGFR in sleep-promoting neurons, mediating stress-induced sleep, or SIS (Hill et al. 2024). Transgenic overexpression of SISS-1 (or LIN-3) at any stage produces a robust EGFR-dependent sleep bout characterized by a cessation of feeding and locomotion (Van Buskirk & Sternberg 2007; Hill et al. 2024). While LIN-3 and <u>SISS-1</u> were identified by their mutant phenotypes, <u>IGEG-2</u> was identified as a predicted transmembrane protein with immunoglobulin-like (Ig) and EGF domains in its ectodomain (Fig. 1A; Sternberg et al. 2024). All members of the EGF family undergo ectodomain shedding via processing within their juxtamembrane region (Higashiyama et al. 2008). iggg-2 null mutants are superficially wild type and the function of <u>IGEG-2</u> is not known. However, <u>IGEG-2</u> overexpression (OE) can promote EGFR-dependent events including vulval cell fate induction and sleep (Mailhot et al. 2025), indicating that it is a functional EGFR ligand. Here we aim to use these overexpression phenotypes to perform a structure-function analysis of IGEG-2.

EGF family ligands are characterized by the presence of an EGF domain, which participates in receptor binding via three loops formed by disulfide bonds among six highly conserved cysteines (Harris et al. 2003). Immunoglobulin-like domains (IgD) are β-sandwich structures common among cell surface proteins, and heterogeneous interactions between Ig domains regulate recognition, adhesion, and signaling in a variety of contexts (Halaby et al. 1999). Ig-like and EGF domains are found together in the ectodomains of *C. elegans* SISS-1, *Drosophila* Vein, and certain vertebrate Neuregulins, but the impact of the Ig domain appears to vary (Jones & Van Buskirk 2025; Donaldson et al. 2004; Li & Loeb 2001). The IgD of SISS-1 is critically required for its sleep-promoting activity via an unknown mechanism (Jones & Van Buskirk 2025), and the IgD of human Neuregulin 1 confers enhanced and extended receptor activation (Li & Loeb 2001), likely via anchoring of the ligand to heparan sulfate proteoglycans within the extracellular matrix (Loeb & Fischbach 1995; Meier et al. 1998). By contrast, the IgD of Vein is not required for endogenous wing vein patterning, but expression of Ig-deleted Vein has toxic effects not seen following expression of native Vein, suggesting that the Ig domain may restrict inappropriate signaling (Donaldson et al. 2004).

To investigate the function of the IGEG-2 Ig domain, we expressed full-length and Ig-deleted variants of IGEG-2 (Fig. 1A) from a heat-inducible promoter in a wild-type background and assayed phenotypes associated with EGFR hyperactivation. We first examined vulva induction, normally mediated by LIN-3 released from the gonadal anchor cell during the L2 larval stage. This localized source of LIN-3 activates LET-23/EGFR in the nearest three of six multipotent vulval precursor cells (VPCs) to initiate vulval organogenesis (Moghal & Sternberg 2003). Widespread expression of LIN-3 (Katz et al. 1995) or IGEG-2 (Mailhot et al. 2025) at the L2 stage from a heat-inducible promoter drives hyperinduction, with up to six VPC adopting vulval fates. We first examined the requirement for the Ig domain within the context of overexpression of a full-length <code>igeg-2</code> cDNA (Fig. 1A, pro-IGEG-2 +Ig vs. -Ig) and we found the Ig domain to be essential for vulval hyperinduction (Fig. 1B). To test the possibility that the IgD functions to recruit a sheddase, we examined the IgD-dependence of a constitutively-secreted form of IGEG-2 (Fig. 1A, sec-IGEG-2 +Ig vs. -Ig). We found that like pro-IGEG-2, sec-IGEG-2 function is critically dependent on the IgD (Fig. 1B), pointing to a role other than sheddase recruitment. Interestingly, the fraction of hyperinduced vulvae produced by pro-IGEG-2(OE) and sec-IGEG-2(OE) is not significantly different (P=0.3831, Fisher's exact test of fraction hyperinduced), indicating that ectodomain shedding is not a limiting step in IGEG-2 signaling, at least not during overexpression.

We then examined whether the Ig domain is required for IGEG-2(OE) signaling in the context of sleep-promoting neurons. Stress-induced sleep (SIS) is normally mediated by SISS-1/EGF shedding from damaged cells by the stress-responsive protease ADM-4, activating LET-23/EGFR in the ALA and RIS neurons (Hill et al. 2024; Konietzka et al. 2020). Widespread expression of any *C. elegans* EGFR ligand, including IGEG-2, induces a prolonged sleep bout (Van Buskirk & Sternberg 2007; Hill et al. 2024; Mailhot et al. 2025). We found the IGEG-2 IgD to be necessary for the sleep-promoting activity of both pro-IGEG-2 and sec-IGEG-2 (Fig. 1C, D). Again, the phenotypes observed with overexpression of pro-IGEG-2 and sec-IGEG-2 are not distinct from each other (P=0.1046, unpaired t-test of area under the curve sleep data), indicating that ectodomain shedding is not a limiting step in IGEG-2(OE) signaling.

Together our data indicate that the <u>IGEG-2</u> Ig domain plays a crucial role in EGF signaling in multiple contexts. This IgD dependence is not attributable to a role in ectodomain shedding, at least not solely, leaving open possible functions in protein trafficking, ligand stability, and/or receptor interaction. Like <u>IGEG-2</u>, the <u>C. elegans</u> Ig-EGF <u>SISS-1</u> shows strict

10/23/2025 - Open Access

IgD dependence, as CRISPR-mediated deletion of the IgD abolishes endogenous stress-induced sleep (Jones & Van Buskirk 2025). These findings set *C. elegans* Ig-EGFs apart from those that have been characterized in other species, which retain activity without an IgD (Li & Loeb 2001; Donaldson et al. 2004). An understanding of the contribution of the IgD to <u>IGEG-2</u> signaling will likely require the identification of the endogenous function of this EGFR ligand.

Methods

Vulval Induction: Transgenic late L2 animals were transferred to 35 x 10 mm (5 mL) NGM plates seeded with OP50 *E. coli*. Plates were sealed with Parafilm and placed upright (lid up) in a 33°C water bath for 30 minutes to induce transgene expression. Animals were grown at 16°C before and after heat shock and examined at the L4 stage by differential interference contrast (DIC) microscopy on a Zeiss Axio Imager A2. The number of VPCs induced was inferred by examination of invaginations of the ventral epithelium. For example, wild-type induction of 3 VPCs produces a characteristic invagination at the L4 stage containing 22 vulval cells, while maximal hyperinduction (6 VPCs) yields up to three more invaginations that together possess roughly another 22 vulval cells (Sternberg & Horvitz 1991). Experimenter was blind to genotype.

Sleep Assays: Transgenic young adult animals raised at 16°C were transferred to 5 mL NGM plates seeded with OP50 *E. coli*. Plates were sealed with parafilm and placed in a 35 °C water bath for 20 minutes to induce transgene expression. After heat shock, parafilm was removed and plates were cooled to room temperature by placing them on frozen LabArmor beads for 1 min. Plates were moved to a stereomicroscope at room temperature for examination of transgene-dependent sleep. Animals with no pharyngeal pumping nor movement during a 3-second observation were scored as quiescent. Experimenter was blind to genotype.

Transgene Construction: The hs:pro-IGEG-2 transgene was constructed as previously described (Mailhot et al. 2025). The hs:pro-IGEG-2(–Ig) construct was synthesized in a similar manner but with the Ig domain (residues 46-117, nucleotides 151-366 of the F48C5.1.1 transcript) deleted. Gene fragments corresponding to secreted IGEG-2 with and without the IgD were synthesized by Twist Biosciences as for pro-IGEG-2 but truncated 8 amino acids upstream of the predicted transmembrane domain, by replacing Val180 of the full-length ORF with a stop codon (TAA). Each fragment was flanked by KpnI and SacI sites and cloned into the vector pPD49.83 (Addgene plasmid #1448), placing each IGEG-2 variant under the control of the heat-inducible <a href="https://linear.night.ni

Software: The data was graphed and analyzed as described in the figure legend using GraphPad Prism software. The Figure 1A schematic was created in BioRender https://BioRender.com/oktmmft.

Reagents

reagents	
Strain name	Genotype
CVB82	<i>csnEx7</i> [<i>hsp-16.41</i> p::pro- <u>IGEG-2</u> (pCV50), <i>col-12</i> p::DsRed]
CVB99	csnEx14 [(<u>hsp-16.41</u> p::pro- <u>IGEG-2</u> (–Ig) (pCV51), <u>myo-2</u> p::DsRED]
CVB104	csnEx13 [<u>hsp-16.41</u> p::sec- <u>IGEG-2</u> (pCV52), <u>myo-2</u> p::GFP]
CVB101	csnEx11 [<u>hsp-16.41</u> p::sec- <u>IGEG-2</u> (–Ig) (pCV53), <u>myo-2</u> p::GFP]

All strains are available from the Van Buskirk lab upon request.

Acknowledgements: We thank the students of CSUN BIOL447/L FIRE lab (Fall 2023) for assistance with the initial characterization of sec-IGEG-2. We thank the Van Buskirk Lab for their valuable suggestions and Eva Mendez for her unwavering support.

References

Donaldson T, Wang SH, Jacobsen TL, Schnepp B, Price J, Simcox A. 2004. Regulation of the Drosophila epidermal growth factor-ligand vein is mediated by multiple domains. Genetics 167(2): 687-98. PubMed ID: <u>15238521</u>

Halaby DM, Poupon A, Mornon J. 1999. The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 12(7): 563-71. PubMed ID: $\underline{10436082}$

10/23/2025 - Open Access

Harris RC, Chung E, Coffey RJ. 2003. EGF receptor ligands. Exp Cell Res 284(1): 2-13. PubMed ID: 12648462

Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. 2008. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci 99(2): 214-20. PubMed ID: <u>18271917</u>

Hill RJ, Sternberg PW. 1992. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 358(6386): 470-6. PubMed ID: <u>1641037</u>

Hill AJ, Robinson B, Jones JG, Sternberg PW, Van Buskirk C. 2024. Sleep drive is coupled to tissue damage via shedding of Caenorhabditis elegans EGFR ligand SISS-1. Nat Commun 15(1): 10886. PubMed ID: 39738055

Jones JG, Van Buskirk C. 2025. The Immunoglobulin Domain of SISS-1/EGF is Required for its Function. MicroPubl Biol 2025: 10.17912/micropub.biology.001842. PubMed ID: 41031131

Katz WS, Hill RJ, Clandinin TR, Sternberg PW. 1995. Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell 82(2): 297-307. PubMed ID: 7628018

Konietzka J, Fritz M, Spiri S, McWhirter R, Leha A, Palumbos S, et al., Bringmann H. 2020. Epidermal Growth Factor Signaling Promotes Sleep through a Combined Series and Parallel Neural Circuit. Curr Biol 30(1): 1-16.e13. PubMed ID: 31839447

Li Q, Loeb JA. 2001. Neuregulin-heparan-sulfate proteoglycan interactions produce sustained erbB receptor activation required for the induction of acetylcholine receptors in muscle. J Biol Chem 276(41): 38068-75. PubMed ID: <u>11502740</u>

Loeb JA, Fischbach GD. 1995. ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J Cell Biol 130(1): 127-35. PubMed ID: <u>7540614</u>

Mailhot MM, Jones JG, Castro DL, Van Buskirk C. 2025. IGEG-2 is a C. elegans EGFR ligand. MicroPubl Biol 2025: 10.17912/micropub.biology.001821. PubMed ID: 41040971

Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U, Denzer AJ, Jones G, Brenner HR. 1998. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 141(3): 715-26. PubMed ID: 9566971

Moghal N, Sternberg PW. 2003. The epidermal growth factor system in Caenorhabditis elegans. Exp Cell Res 284(1): 150-9. PubMed ID: 12648474

Sternberg PW, Horvitz HR. 1991. Signal transduction during C. elegans vulval induction. Trends Genet 7(11-12): 366-71. PubMed ID: 1668188

Sternberg PW, Van Auken K, Wang Q, Wright A, Yook K, Zarowiecki M, et al., Stein L. 2024. WormBase 2024: status and transitioning to Alliance infrastructure. Genetics 227(1): 10.1093/genetics/iyae050. PubMed ID: 38573366

Van Buskirk C, Sternberg PW. 2007. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 10(10): 1300-7. PubMed ID: 17891142

Funding: This work was supported by the National Science Foundation (DUE 2216486) and the National Institutes of Health (R16 NS134541) to CVB.

Author Contributions: Darlene Mendez: investigation, formal analysis, visualization, writing - original draft. Marine Barsegyan: investigation, writing - review editing. Cheryl Van Buskirk: conceptualization, funding acquisition, project administration, writing - review editing.

Reviewed By: Henrik Bringmann

Nomenclature Validated By: Anonymous

History: Received September 17, 2025 **Revision Received** October 14, 2025 **Accepted** October 22, 2025 **Published Online** October 23, 2025 **Indexed** November 6, 2025

Copyright: © 2025 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Mendez D, Barsegyan M, Van Buskirk C. 2025. The immunoglobulin domain of *C. elegans* IGEG-2/EGF is required for its function. microPublication Biology. <u>10.17912/micropub.biology.001855</u>