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Abstract

Lipoic acid is an essential cofactor for multiple enzymes involved in aerobic respiration, and disruption to any of the
pathways contributing to lipoic acid synthesis result in severe respiratory dysfunction. Despite the importance of lipoic
acid, few studies have directly investigated the necessity of the lipoic acid synthase itself in eukaryotes. We have used
Caenorhabditis elegans to address this gap and created CRISPR knockouts of lias-1, the first lias-1 knockouts reported in
C. elegans. These mutants show developmental arrest, sterility, and shortened lifespan which cannot be rescued by
supplementing with exogenous lipoic acid suggesting a necessity for de novo lipoic acid synthesis in C. elegans.
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Figure 1. Impaired development of lias-1 mutant C. elegans:

A) Schematic of the eukaryotic lipoyl relay pathway. C. elegans protein names are utilized in labels and the
octanoyl/lipoyl moieties are indicated with labels with lipoic acid outlined in the dotted line. ACP: acyl carrier protein;
E2: E2 subunit of oxoacid dehydrogenase complex.

B) Schematic of the lias-1 gene. Untranslated regions shown in gray; exons shown in orange. CRISPR cut sites and
resulting deletion alleles shown with dotted lines.

C) Representative images of WT and lias-1 mutant animals 72 hours post egglay. Scale bar: 500 pm.

D) Penetrance of L3 arrest phenotype in ligs-1 mutants. The individual number of animals assayed are shown for each
condition as well as the percent (%) of animals arresting at L3 shown in parentheses.

E) Kaplan-Meier survival curves of WT and [igs-1 mutant animals without (left) or with (right) supplemented LA. ****;
p<0.0001 by log-rank analysis with Bonferroni correction for multiple comparisons. For LA supplementation, there were
no significant differences due to LA treatment within the WT or lias-1(av247) groups. n=57-94 animals across two
independent trials for the untreated lifespan. n=71-122 animals across two independent trials for the LA-supplemented
lifespan. Data from independent trials were aggregated into a single dataset for clarity.

F) Representative western blot analysis of lipoylated proteins in C. elegans and E. coli samples. Molecular weights
indicated on the left in kD. Prospective protein identities indicated on the right with C. elegans proteins in black and E.
coli proteins in green. Ponceau S staining included to show protein loading. Lane order matches that of the blot, above.

Description

Lipoic acid (LA) is a small thiol-containing cofactor that is essential for the function of the five oxoacid dehydrogenases
which include pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase (Cronan, 2016, 2024). In eukaryotes, LA is
synthesized de novo by a process known as the lipoyl relay in which octanoic acid is converted to LA through the
insertion of two thiols by the lipoic acid synthase (LIAS) (Figure 1A)(Cronan, 2024). This synthesis pathway is extremely
well conserved, and loss of LA synthesis, either through direct loss of lipoyl relay or the upstream reactants, is associated
with over a dozen mitochondrial diseases (Mayr et al., 2014; Tort et al., 2016; Cronan, 2020; Kastaniotis et al., 2020).
Despite the importance of this pathway, there is a lack of research on the necessity of LIAS in multicellular organisms. To
address this gap, we have generated novel and independently-generated CRISPR/Cas9 knockout strains of the
Caenorhabditis (C.) elegans LIAS ortholog, lias-1, in which the majority of the coding sequence of lias-1 has been deleted
(Figure 1B). Deletion was confirmed by PCR and Sanger sequencing. Using C. elegans parlance, we have named these
alleles lias-1(av247) and (av248).

We determined that both [igs-1 mutants arrested at the L3 larval stage (Figure 1C, D) and had significantly shorter
lifespans than WT animals (Figure 1E). Although mild mitochondrial or metabolic stress frequently have lifespan
extending effects in C. elegans, severe mitochondrial stress does shorten lifespan or lead to embryonic lethality. This fact
is particularly true for mutants in iron-sulfur cluster biogenesis (Ast et al., 2019; Kropp et al., 2021) which is necessary to
provide the sulfurs for thiol insertion in lipoic acid (McCarthy and Booker, 2017; McCarthy et al., 2019; Warui et al.,
2022). Therefore, these lias-1 mutants are consistent with severe mitochondrial stress leading to decreased fitness.

As the two lias-1 alleles were phenotypically identical, we used the lias-1(av247) allele for further analyses. Some
bacteria and fungi are capable of scavenging LA from the environment (Cronan, 2024), and C. elegans have been shown
to be able to scavenge metabolic cofactors from their E. coli food source (Warnhoff and Ruvkun, 2019; Warnhoff et al.,
2021), so we tested if supplementation with increasing concentrations of LA up to 100 mM could rescue the L3 arrest and
lifespan of lias-1(av247) animals. However, LA supplementation had no effect on the development or lifespan of the
mutant or WT animals (Figure 1D,E) indicating that exogenous LA is likely not bioavailable to C. elegans. This finding is
in agreement with other studies demonstrating that exogenous LA provides a mild antioxidant effect, but cannot be
incorporated into the oxoacid dehydrogenases (Feng et al., 2009; Mayr et al., 2011; Lavatelli et al., 2020; Bick et al.,
2024; Pradel et al., 2024), although we did not test this incorporation directly in the LA-supplemented samples.

To confirm the abolishment of LA production in the [igs-1 mutants, we completed western blot analysis for lipoylated
proteins. The canonical doublet of lipoylated DLAT-1 and DLST-1/DBT-1 is absent in lias-1(av247). Surprisingly, we
could still detect other lipoylated proteins in the [ias-1(av247), but comparison of these bands with the lipoylated proteins
of the bacterial food source (E. coli OP50) showed that nearly all of the residual bands are the same size as E. coli proteins
(Figure 1F). This result suggested that the lias-1 mutants did not clear their gut of E. coli OP50 despite repeated washing
in M9 and a 30-minute incubation which is normally sufficient for C. elegans to pass any residual bacteria. Decreased
pharyngeal pumping and/or reduced defecation likely explain this phenotype, however, neither phenotype was assessed in
this study. Intriguingly, some of the lipoylated protein bands in the lias-1(av247) samples do not correlate with E. coli
proteins (e.g. at ~8 and ~70 kD). These bands may be bacterial proteins scavenged by C. elegans and modified,
metabolized, or degraded to yield these novel bands, although we have no direct evidence for this possibility. More
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thorough analyses of these possibilities such as feeding lias-1(av247) an LA auxotroph bacteria such as the lipA-IplA
mutant TM131 will be necessary to make such determinations.

Although the LA synthesis pathway has been previously defined in C. elegans (Lavatelli et al., 2020), this is the first study
to use genetic manipulation of lias-1 rather than RNAi knockdown. We did not assess oxidative stress in our mutants as
Lavatelli and colleagues did, but the gross developmental and physiological phenotypes are otherwise similar, if more
severe, than the RNAi phenotypes (Lavatelli et al., 2020). Therefore, we conclude that de novo synthesis of LA by LIAS-1
is necessary for development and lifespan in C. elegans as it is in other organisms. The model generated here
demonstrates the conservation of this pathway and presents a useful genetic model of lipoic acid deficiency.

Methods
Animal maintenance and strain generation

Animals were maintained at 20°C on MYOB culture plates seeded with E. coli OP50 bacteria following standard

practicesB. lias-1 deletion strains were generated via CRISPR/Cas9 gene editing as described in!l. In brief, Cas9 protein,
tracRNA, guide RNAs and a repair oligo were injected into the syncytial gonad of WT, day-1 adult hermaphrodites with a
dpy-10 co-CRISPR marker. Guide and repair sequences are listed in Table 1. Sterile lias-1 alleles were balanced with the
qCl1 balancer (see “Reagents”, below).

Genotyping analysis was completed with DNA lysates prepared via proteinase K lysis and amplified with NEB Taq
Polymerase following the manufacturer's recommended protocol. Primer sequences were: 5' cacgtctgattgcgtatcgt 3'
(forward primer) and 5' gacccatcgtttaccctgaaata 3' (reverse primer).

Table 1: Oligos sequences for CRISPR. All reported 5' — 3"

Oligo Sequence (5'-3")

ligs-15'

guide RNA AGCATgcttaaacaatctacGUUUUAGAGCUAUGCUGUUUUG

lias-13'

. GTTCGCTCTTCGTACAAAGCGUUUUAGAGCUAUGCUGUUUUG
guide RNA

lias-1 repair | gattttcaacacaaggagtttaattattaccggtaagccggagaattctatttgaaaaatgtgttgagaa

dpy-10

guide RNA gctaccataggcaccacgagGUUUUAGAGCUAUGCUGUUUUG

dpy-10 CACTTGAACTTCAATACGGCAAGATGAGAATGACTGGAAACCGTACCGCATGCGGTGC
repair CTATGGTAGCGGAGCTTCACATGGCTTCAGACCAACAGCCTAT

Gene alignments

Genetic sequences were obtained from Eurofins Genomics. Sequence alignments were performed with T-Coffee and
annotations were completed with JalView.

Imaging

Representative images of WT and mutant animals were captured on a Zeiss Stemi 508 equipped with a Zeiss Axiocam
208 color camera. Acquisition and image processing was completed with Zeiss Zen Blue 3.7 software on an HP Z2
desktop.

Lifespan and 1.3 arrest analyses

Synchronous populations for lifespan and L3 arrest assays were generated via synchronized egg lay. The day of the egg
lay was considered day 0. Homozygous animals were manually picked to assay plates after hatching. For lifespan assays,
fertile WT animals were transferred to fresh plates daily until the end of egg laying. All animals were transferred to fresh
plates every other day thereafter. Lifespan assay with LA was completed identically to above with assay plates prepared as
described below. For L3 arrest analyses, animals were assessed 72 hours after egg lay. Data from independent assays were
aggregated into a complete data set.

Lipoic acid treatment
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MYOB assay plates were supplemented with 0, 12.5, 25, 50, or 100 pM lipoic acid. Lipoic acid was prepared at 1,000X in
100% EtOH. All plates including the O pM plates contained 0.1% EtOH. Plates were otherwise treated as described above.

Western blot analysis

C. elegans and OP50 lysates were prepared with 100 pL. RIPA buffer (ThermoFisher Scientific #J63306-AK) and 1X
HALT protease and phosphatase inhibitor cocktail (ThermoFisher Scientific #78440). Samples were sonicated 5 times at
50% duty cycle with a tip sonicator and cellular debris was pelleted by centrifugation for 15' at 14,000 rpm at 4°C. Protein
lysates were collected and frozen at -80°C for storage. Protein concentration was quantified with a Pierce BCA Protein
Assay Kit (ThermoFisher Scientific #002327). For each sample, 7.5 pg of protein was prepared in 1X Laemmeli Sample
Buffer (Bio-Rad #1610747) and 5 mM DTT and run on polyacrylamide gels (Any kD Mini-PROTEAN TGX Stain-Free
Gels, Bio Rad # 4569033) in Tris-Glycine-SDS buffer (Bio-Rad #1610732) prior to transfer to 0.2 mm nitrocellulose
membranes (Bio-Rad # 1704158). Membranes were stained with 0.5% Ponceau S (w:v) in 5% glacial acetic acid for 5' at
room temperature. Membranes were rinsed with distilled water to remove background and destained with 0.1% NaOH.
Membranes were blocked with Everyblot Blocking Buffer (Bio-Rad #12010020) and incubated overnight at 4°C with the
primary antibody (Rb anti-lipoic acid, 1:1,000, Calbiochem #437695-100 or Ms anti-alpha tubulin, 1:2,500, DSHB
#12G10) diluted in 3% bovine serum albumin (BSA). Membranes were washed 5x5' with TBST before incubation with
secondary antibody (HRP Goat anti-Rb or anti-Ms (1:15,000, Proteintech #SA00001-1 or SA00001-2, respectively) with
StepTactin (1:50,000, Bio-Rad #1610381) in 3% BSA for 2 hours at room temperature. Antibodies were developed using
Clarity Western ECL Substrate (Bio-Rad #1705060) with a Chemidoc MP.

Data analysis

Data were plotted and analyzed with GraphPad Prism version 10.3.1.

Reagents
The strains used in this study are listed in Table 2. Strains are available upon request.

Table 2: Strains used in this study

Strain Genotype Source

N2 WT Caenhorhabditis Genetics Center
AG626 |lias-1(av247)/qC1[dpy-19(e1259) glp-1(q339)] nIs189) III This study

AG627 |lias-1(av248)/qC1[dpy-19(e1259) glp-1(q339)] nIs189) 111 This study

OP50 Erischerichia coli OP 50 Caenhorhabditis Genetics Center

Acknowledgements: We thank the Caenorhabditis Genetics Center which is funded by NIH Office of Research
Infrastructure Programs (P40 OD010440) for providing the N2 strain. We also provide a deep thanks to Andy Golden
who, if not for his untimely passing, would be an author on this paper.
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