

BALROG-ISO: a high-throughput pipeline for Bacterial AntimicrobiaL Resistance annOtation of Genomes-ISOlate whole genome

Edward Bird¹, Victoria Pickens¹, Cassandra Olds¹, Kristopher Silver^{1§}, Dana Nayduch^{2§}

Abstract

BALROG-ISO is a Nextflow pipeline for automated analysis of whole genome sequences of bacterial isolates to perform taxonomic classification, genomic annotation, annotation of antimicrobial resistance genes (ARGs), and prediction of ARG origin (e.g., plasmid, chromosomal). A final summary report additionally offers a comprehensive and user-friendly visualization of key quality metrics and annotation results. BALROG-ISO minimizes command inputs and streamlines modular processes, enabling the concurrent analysis of more genomic samples while also reducing manual job submission and analysis inconsistencies. Overall, BALROG-ISO is an adaptable workflow pipeline optimized for a One Health approach to the exploration of antimicrobial resistance in bacterial genomes.

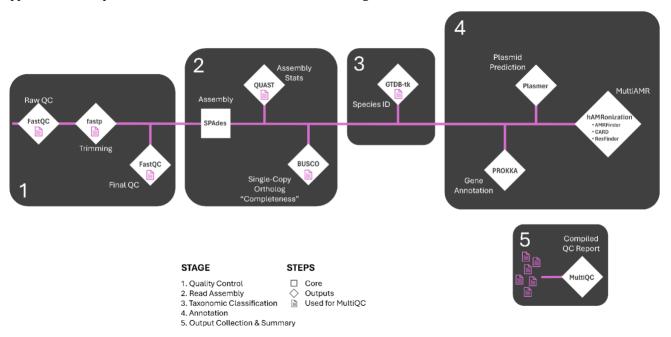


Figure 1. Diagram of the BALROG-ISO workflow.:

Outputs from Quality Control, Read Assembly, and Species Identification are summarized in a MultiQC report. Antimicrobial resistance (AMR) results are consolidated into a single report using hAMRonization. Prokka and Plasmer generate outputs on a per-sample basis. Stages 1, 2, 3 & 4 are run with a single command and the MultiQC report is generated by a secondary command on run completion.

Description

BALROG-ISO (Bacterial AntimicrobiaL Resistance annotation of Genomes — ISOlate whole genome) (https://github.com/edwardbirdlab/BALROG-ISO) automates the assembly, species classification, and annotation of antimicrobial resistance genes (ARGs) from whole genome sequences of bacterial isolates. A rising and persistent threat to global health, antimicrobial resistance (AMR) decreases the efficacy of antibiotics for the treatment and prevention of bacterial infections. In accordance with the One Health approach, large-scale whole genome sequencing (WGS) of AMR bacterial isolates from clinical, food production, and environmental sources has become a primary tactic for the detection and monitoring of AMR emergence and prevalence of associated ARGs.

¹Entomology, Kansas State University, Manhattan, Kansas, United States

²Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States

[§]To whom correspondence should be addressed: ksilver@ksu.edu; dana.nayduch@usda.gov

11/5/2025 - Open Access

National and global initiatives release priority lists of pathogenic species to guide research and strategy development for combatting AMR (CDC 2019, WHO 2024). Current WGS analysis tools for bacterial isolates are therefore optimized for these priority species, resulting in a lack of efficient workflows for less commonly studied AMR species. However, WGS of "non-priority" species in the environment are essential for understanding their contributions to the establishment of AMR bacteria in clinical settings (Berendonk et al. 2015). Additionally, surveillance of AMR and associated ARGs in isolates has increased demand for high-throughput pipelines with streamlined workflows that significantly reduce the number of manual job submissions required from users while concurrently standardizing the data analysis process. To address this need, we designed BALROG-ISO, a reproducible Nextflow pipeline for surveillance of ARGs from WGS of isolated bacteria regardless of bacterial species or sample origin.

BALROG-ISO v1.0 (DOI: 10.5281/zenodo.15354071) consists of five major steps: (1) Quality Control, (2) Read Assembly, (3) Taxonomic Classification, (4) Annotation, and (5) Output Collection and Summary. BALROG-ISO is implemented using Nextflow, with each step isolated into modular processes that can be easily adapted or modified based on user requirements. The entire workflow runs with a single command, providing a streamlined and scalable approach. Dependency management is handled through Docker containers, ensuring consistent and reproducible results across various computing platforms. Initially, sequencing reads are trimmed to remove Illumina or Element adapters and low-quality bases. Cleaned reads are then assembled into contigs, which are subjected to taxonomic classification. Assembled genomes undergo both general structural and functional annotation, as well as antibiotic resistance gene (ARG) annotation. Finally, key quality metrics and annotation results are aggregated and visualized in an intuitive, user-friendly summary report.

During Quality Control, quality assessment of raw sequencing reads is performed using FastQC v0.12.1 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to generate summary statistics and diagnostic plots. Human sequences are masked from raw sequencing data using the Human Read Removal Tool (HHRT) v2.2.1 (https://github.com/ncbi/sra-human-scrubber) with database version 20250325v2. Reads are subsequently processed with fastp v0.20.1 (https://github.com/OpenGene/fastp) for adapter trimming and removal of low-quality bases. By default, Illumina adapter sequences are removed; however, Element Biosciences adapters can be trimmed using the '--sequencing_adapter_type aviti' option. Custom adapter sequences may also be specified using '--sequencing_adapter_type custom' in combination with '--custom_sequencing_adapter_r1' and '--custom_sequencing_adapter_r2'. Users can modify trimming parameters, including the minimum average quality threshold '--fastp_q' (default: 20) and the minimum read length '--fastp_minlen' (default: 100). Following trimming, the cleaned reads are re-evaluated with FastQC v0.12.1 to verify improvements in quality and ensure suitability for downstream analyses.

Quality-controlled reads are assembled *de novo* using SPAdes v3.15.5 (https://github.com/ablab/spades) in '--isolate' mode, which is optimized for isolated microbial genomes and provides improved assembly quality with reduced runtime. SPAdes automatically selects appropriate k-mer sizes based on the input read length, optimizing assembly parameters for each dataset. The resulting assemblies are evaluated using QUAST v5.2.0 (https://github.com/ablab/quast), which reports key assembly metrics including total length, number of contigs, N50, and GC content. To assess completeness, assemblies are analyzed with BUSCO v5.8.2 (https://gitlab.com/ezlab/busco) using the 'bacteria_odb10' lineage as the default reference set. Users may specify an alternative lineage by setting the '--busco_lineage' parameter to specify the BUSCO set to use.

Assembled genomes are taxonomically classified using the Genome Taxonomy Database Toolkit v2.4.0 (GTDB-Tk; https://github.com/Ecogenomics/GTDBTk) with the latest available GTDB reference release (Parks et al. 2022) automatically retrieved by the pipeline. Classification is carried out using the 'classify_wf' workflow, which integrates average nucleotide identity screening, phylogenetic marker gene detection, and multiple sequence alignment. Genomes are then positioned within the GTDB reference tree using a maximum-likelihood approach, enabling accurate assignment to bacterial taxa based on evolutionary relationships and genome similarity.

For genome annotations, Plasmer v0.1-20220816 (https://github.com/nekokoe/Plasmer) classifies sequences as either plasmid- or chromosome-derived and predicts the likely taxonomic origin of plasmid sequences. Functional genome annotation is performed using Prokka v1.14.6 (https://github.com/tseemann/prokka), providing gene predictions and general feature annotation. To identify antimicrobial resistance genes (ARGs), three tools are employed: Resistance Gene Identifier v6.0.3 (RGI; https://github.com/arpcard/rgi) using the CARD protein homology models (Alcock et al., 2023), AMRFinderPlus v4.0.19 (https://github.com/ncbi/amr), and ResFinder v4.6.0 (https://github.com/genomicepidemiology/resfinder). AMRFinderPlus and ResFinder models are also used to find point mutations and genes specific to species. These models can be utilized by specifying the species for the run, using the two parameters '--amrfinder_lineage' and '-resfinder_lineage' respectively. The outputs from all three tools are integrated into a unified, standardized report using hAMRonization v1.1.8 (https://github.com/pha4ge/hAMRonization), facilitating downstream interpretation and comparison.

Plasmer results are presented in tabular format, while the outputs from the three ARG annotation tools are consolidated into a single comprehensive table. Results from FastQC (raw and trimmed data), fastp, GTDB-Tk, BUSCO, and QUAST

11/5/2025 - Open Access

are aggregated and visualized using MultiQC v1.28 (https://github.com/MultiQC/MultiQC). This tool compiles the outputs into a unified, easy-to-interpret report, offering a comprehensive overview of data quality, assembly statistics, taxonomic classification, and genome completeness across all samples.

BALROG-ISO is a publicly-available Nextflow pipeline designed for high-throughput, streamlined analysis of AMR and associated ARGs from bacterial whole genome sequencing data. This pipeline supports short read, whole genome sequences from a wide range of bacterial taxa, offering a standardized and reproducible workflow suitable for AMR/ARG characterization originating from any bacterial species, although users may alternatively opt to analyze a target bacterial species through simple parameter adjustments. BALROG-ISO's modular design enables easy customization, as well as the integration of additional or specialized analyses. Tool outputs are consolidated into comprehensive visual reports for users' ease to more effectively perform quality control and high-level screening of genomic data. Additionally, individual sample reports are comprehensive and allow for deep insights into individual samples of interest. By integrating ARG annotation, gene origin prediction, and taxonomic classification into a single, user-friendly workflow, BALROG-ISO will streamline AMR surveillance efforts, and its taxonomic freedom strengthens One Health strategies to monitor and mitigate the spread of AMR in pathogenic and environmental bacteria alike.

Acknowledgements: Special thanks to Brandon Hall and Grant Brooke (Kansas State University), as well as Tanya Purvis and Luke Brendel (USDA-ARS), for their assistance in collecting and processing samples to be used as testing data for validation of the pipeline. Some of the computing for this project was performed on the Beocat Research Cluster at Kansas State University, which is funded in part by NSF grants CNS-1006860, EPS-1006860, EPS-0919443, ACI-1440548, CHE-1726332, and NIH P20GM113109. This research used resources provided by the SCINet project of the USDA Agricultural Research Service, ARS project numbers 0201-88888-003-00D and 0201-88888-002-00D. This manuscript is contribution No. 25-211-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS, USA. Mention of trade names or commercial products in this report is solely to provide specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The US Department of Agriculture is an equal opportunity lender, provider and employer.

References

Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al., McArthur. 2022. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research 51: D690-D699. DOI: 10.1093/nar/gkac920

Andrews S. 2010. FastQC. Available from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Berendonk TU, Manaia ClM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al., Martinez. 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology 13: 310-317. DOI: <u>10.1038/nrmicro3439</u>

Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al., Aarestrup. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy 75: 3491-3500. DOI: 10.1093/jac/dkaa345

Centers for Disease Control and Prevention (U.S.). 2019. Antibiotic resistance threats in the United States, 2019. : 10.15620/cdc:82532. DOI: 10.15620/cdc:82532

Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2022. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38: 5315-5316. DOI: <u>10.1093/bioinformatics/btac672</u>

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890. DOI: <u>10.1093/bioinformatics/bty560</u>

Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, et al., Klimke. 2021. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Scientific Reports 11: 10.1038/s41598-021-91456-0. DOI: 10.1038/s41598-021-91456-0

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29: 1072-1075. DOI: 10.1093/bioinformatics/btt086

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution 38: 4647-4654. DOI: 10.1093/molbev/msab199

Mendes Is, Griffiths E, Manuele A, Fornika D, Tausch SH, Le-Viet T, et al., Maguire. 2024. hAMRonization: Enhancing antimicrobial resistance prediction using the PHA4GE AMR detection specification and tooling. : 10.1101/2024.03.07.583950. DOI: 10.1101/2024.03.07.583950

Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil PA, Hugenholtz P. 2021. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research 50: D785-D794. DOI: 10.1093/nar/gkab776

11/5/2025 - Open Access

Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes De Novo Assembler. Current Protocols in Bioinformatics 70: 10.1002/cpbi.102. DOI: 10.1002/cpbi.102

WHO. 2024. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization. ISBN: 978-92-4-009346-1

Zhu Q, Gao S, Xiao B, He Z, Hu S. 2023. Plasmer: an Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-mers and Genomic Features. Microbiology Spectrum 11: 10.1128/spectrum.04645-22. DOI: 10.1128/spectrum.04645-22

Funding: This work was supported by United States Department of Agriculture—Agriculture Research Service National Program 104 projects 3020-32000-018-00D and 3020-104000-001-000D.

Author Contributions: Edward Bird: conceptualization, methodology, software, writing - original draft, writing - review editing, investigation, validation, visualization. Victoria Pickens: writing - original draft, writing - review editing, visualization, conceptualization, investigation, methodology. Cassandra Olds: supervision, writing - review editing, conceptualization, resources, writing - original draft. Kristopher Silver: writing - review editing, supervision, resources, writing - original draft. Dana Nayduch: conceptualization, funding acquisition, supervision, writing - review editing, methodology, resources.

Reviewed By: Anonymous

History: Received June 24, 2025 **Revision Received** November 4, 2025 **Accepted** November 2, 2025 **Published Online** November 5, 2025 **Indexed** November 19, 2025

Copyright: © 2025 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Bird E, Pickens V, Olds C, Silver K, Nayduch D. 2025. BALROG-ISO: a high-throughput pipeline for Bacterial AntimicrobiaL Resistance annOtation of Genomes-ISOlate whole genome. microPublication Biology. 10.17912/micropub.biology.001719