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Abstract
Lactic acid bacteria (LAB) are widely used as probiotics and in fermented foods, yet their antibiotic resistance profiles
remain under-characterized. This study evaluates the antibiotic resistance profiles of two Lactiplantibacillus plantarum (L.
plantarum) strains, LpWF (isolated from Drosophila melanogaster) and Lp39 (from cabbage), using broth microdilution
methods. Minimum inhibitory concentrations (MICs) and minimum lethal concentrations (MLCs) were determined for six
antibiotics. Strain-specific differences were found in MICs for kanamycin, neomycin, and geneticin, while ampicillin and
chloramphenicol MICs were similar. Both strains exhibited intrinsic resistance to vancomycin. These findings contribute
to efforts to characterize the LAB resistome and inform probiotic strain selection.
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Figure 1. Minimum Inhibitory Concentration (MIC) and Minimal Lethal Concentration (MLC) results of six
antibiotics tested against three bacterial strains.:

(A, D) MIC and MLC results for Lactiplantibacillus plantarum Lp39 (ATCC 14917, isolated from cabbage); (B, E) MIC
and MLC results for L. plantarum LpWF (isolated from a wild Drosophila); (C, F) MIC and MLC results for Escherichia
coli DH5α. To allow direct comparison of bacterial growth across experiments, OD₆₀₀ values were normalized to bacterial
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growth OD₆₀₀ values were first background-corrected by subtracting the OD₆₀₀ of media-only controls, then normalized
to the average OD₆₀₀ of bacterial growth in MRS broth without antibiotics. Abbreviations: ATB, antibiotics; Cm,
chloramphenicol. Colors: Darker colors indicate higher growth, while lighter colors indicate lower growth. Each right-
hand panel displays the corresponding 96-well plate image, where increased turbidity indicates greater bacterial growth.

Description
Lactic acid bacteria (LAB), including members of the genus Lactiplantibacillus, play a central role in food fermentation,
where many are part of the gut microbiota and are commonly used as probiotics due to their health-promoting properties
(Hill et al. 2014; Zheng et al. 2020). As LABs are increasingly incorporated into dietary supplements, biotechnological
applications and used for experimental design to understand host-microbe interactions, there is a growing need to assess
their antibiotic resistance profiles to ensure biosafety and prevent horizontal gene transfer of antibiotic resistance genes
(ARGs) (FAO/WHO 2001; Kim and Cha 2021)

Lactiplantibacillus plantarum, a genetically diverse LAB species, can be isolated from both plant- and animal-associated
environments (Martino et al. 2016). While generally regarded as safe (GRAS) (US FDA), some strains have been shown
to carry intrinsic or acquired antibiotic resistance, including resistance to vancomycin and aminoglycosides (Ferain et al.
1996; Elkins and Mullis 2004; Deghorain et al. 2007; Klarin et al. 2019; Tuerhong et al. 202). However, resistance
patterns can vary between strains, and little is known about how ecological origin or niche may influence these profiles.

In this study, we compared two L. plantarum strains: LpWF, isolated from the gut of Drosophila melanogaster (Obadia et
al. 2017), and Lp39 (ATCC 14917), isolated from fermented cabbage. We evaluated their susceptibility to six commonly
used antibiotics: kanamycin, vancomycin, ampicillin, chloramphenicol, neomycin, and geneticin (summarized in Table 1).
We determined minimum inhibitory concentrations (MICs) and minimum lethal concentrations (MLCs) using the broth
microdilution method. We used Escherichia coli DH5α as a control (Figure 1).

The MICs are summarized in Table 2. Overall, both strains of L. plantarum exhibited varying degrees of susceptibility to
the antibiotics tested. As expected, vancomycin exhibited the highest MIC values for Lp39 and LpWF, reaching a MIC of
>1024 µg/mL. While E. coli was susceptible at 256 µg/ml. This consistently high vancomycin MIC value indicates an
intrinsic resistance to this antibiotic for Lp39 and LpWF similar to other L. plantarum strains (Ferain et al. 1996; Elkins
and Mullis 2004; Deghorain et al. 2007; Klarin et al. 2019; Campedelli et al. 2019).

In contrast, ampicillin showed similar susceptibility patterns for Lp39 and LpWF, indicating comparable sensitivity to the
antibiotic, consistent with previously reported literature (Campedelli et al. 2019; Kwon et al. 2021). For chloramphenicol,
both strains have MICs of 2 µg/mL, which are lower than those reported for other L. plantarum strains (Campedelli et al.
2019; Kwon et al. 2021). Both L. plantarum strains had similar MICs of 128 µg/mL for geneticin. For neomycin, we find
that Lp39 had a MIC of 256 µg/mL and LpWF of 128 µg/mL. Vancomycin, kanamycin and geneticin were effective at
inhibiting E. coli growth at lower concentrations compared to L. plantarum.

Kanamycin demonstrated differential effectiveness for the L. plantarum strains. Lp39 showed a higher MIC of 1024
µg/mL, while LpWF was susceptible at a lower MIC of 512 µg/mL. This suggests strain-specific mechanisms that warrant
further studies. Our L. plantarum ATCC 14917 strain exhibited a higher MIC to kanamycin (>1024 µg/mL) compared to
previously reported values in the literature, which indicated a MIC of 64 µg/mL (Kwon et al. 2021). This discrepancy may
be due to differences in the strain tested (Q180 in the previous study), experimental conditions, strain handling, or
potential adaptive changes accumulated during laboratory propagation.

As for Minimal Lethal Concentrations (MLCs) values, results showed strain-specific differences for kanamycin (Lp39:
>1024 µg/mL; LpWF: > 512 µg/mL), ampicillin (Lp39: 4 µg/mL; LpWF: 2 µg/mL), chloramphenicol (Lp39: 32 µg/mL;
LpWF: 8 µg/mL), Neomycin (Lp39: 512 µg/mL; LpWF: 256 µg/mL), and Geneticin (Lp39: >1024 µg/mL; LpWF: 512
µg/mL). These findings suggest that while most antibiotics inhibited bacterial growth as shown with MICs, they fail to act
as bactericides. This is expected in the case of chloramphenicol, a known bacteriostatic agent. While only one replicate is
shown in Figure 1, variability in the MLCs was observed across replicates for L. plantarum, particularly for
chloramphenicol, neomycin, and geneticin. Such variation may be due to differences in the L. plantarum inoculum used,
likely resulting from variability in bacterial growth during the MIC assays. However, the differences between the two L.
plantarum strains were consistently observed, highlighting their distinct antibiotic susceptibility profiles.

 
Although both strains belong to the same genus and species, Lactiplantibacillus plantarum, they exhibit notable
differences in susceptibility to kanamycin, highlighting the strain-level variability in antibiotic resistance within this
species. These differences may arise from genetic or phenotypic factors, such as variations in antibiotic uptake and efflux
mechanisms, ribosomal target modifications, or strain-specific antimicrobial resistance (AMR) genes (Campedelli et al.
2019). Previous bioinformatic analyses have shown that AMR genes are present in some L. plantarum strains and can
vary among isolates, supporting the need for individualized resistance profiling (Ferain et al. 1996; Elkins and Mullis
2004; Deghorain et al. 2007; Klarin et al. 2019; Kwon et al. 2021). This variation underscores the importance of strain-
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specific susceptibility testing and suggests that both genetic and environmental factors may contribute to the development
of distinct resistance profiles, even among strains of the same species (Tuerhong et al. 2024).

 
Both strains were phenotypically resistant to vancomycin, consistent with previously reported intrinsic resistance in LAB
species. This is likely due to the presence of D-Ala-D-Lac termini in the peptidoglycan precursors rather than the
acquisition of mobile resistance elements (Ferain et al. 1996; Deghorain et al. 2007).

Similarly, resistance to aminoglycosides such as kanamycin and neomycin appears to be intrinsic. This pattern is
consistent with prior reports showing that L. plantarum strain WCFS1 and related LABs possess low membrane
permeability, which limits aminoglycoside uptake and confers natural resistance (Elkins and Mullis 2004). Thus, the
aminoglycoside resistance observed in Lp39 and LpWF is best attributed to this intrinsic mechanism rather than horizontal
gene transfer or mobile genetic elements.

In addition to chromosomal differences, plasmid-encoded traits may also contribute to these strain-specific resistance
profiles. Although plasmid profiles were not assessed in this study, L. plantarum strains are known to harbor plasmids
encoding a wide array of stress-related functions. For example, strain WCFS1 carries plasmid pWCFS103, which encodes
genes involved in redox metabolism and arsenate resistance (van Kranenburg et al., 2005). A broader analysis of 105 L.
plantarum strains identified 395 plasmids, many encoding strain-specific genes associated with oxidative stress response
and heavy metal resistance (Davray et al., 2023). While these functions are not canonical antibiotic resistance
determinants, they may enhance cellular resilience and indirectly influence susceptibility to antibiotics such as kanamycin.
Additionally, recent sequencing of the LpWF genome revealed five plasmids, including one carrying genes linked to
Drosophila gut colonization not found in ATCC 8014 (Gutiérrez-García et al., 2024). All these studies highlight strain-
specific adaptive functions potentially encoded by plasmids. Future comparative analysis of plasmid content in Lp39 and
LpWF may help clarify their contribution to the MIC differences observed in this study.

In summary, our findings highlight the complex and strain-specific nature of antibiotic resistance in L. plantarum. Both
Lp39 and LpWF exhibited intrinsic resistance to vancomycin. Notably, Lp39 showed resistance to kanamycin, while
LpWF remained susceptible, though only at high concentrations. Both strains were susceptible to ampicillin and
chloramphenicol. These findings also highlight the need for further research into the molecular mechanisms underlying
strain-specific resistance in L. plantarum.

Table 2. Minimum inhibitory concentrations (MICs) of antibiotics for strain L. plantarum ATCC 14917 (Lp39), L.
plantarum isolated from the gut of the wild fly (LpWF), and E. coli DH5α.

MIC (µg/ml)

Antibiotic L. plantarum (Lp39) L. plantarum (LpWF) E. coli (DH5α)

Kanamycin 1024 512 4

Vancomycin >1024 >1024 256

Ampicillin 2 2 4

Chloramphenicol 2 2 2

Neomycin 256 128 8

Geneticin 128 128 2

Methods
The minimum inhibitory concentration (MIC) of these 6 antibiotics was determined using broth microdilution methods
according to the Clinical and Laboratory Standards Institute (CLSI; www.clsi.org)

Each antibiotic was prepared at an initial concentration of 1024 µg/mL and performed two-fold serial dilutions down to a
concentration of 2 µg/mL in a 96-well plate, resulting in a range of concentrations. Each well in the plate contained 200
µL of total volume.
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Bacterial cultures were prepared by growing the strains in their respective media for 24 hours in aerobic conditions. After
growth, the bacterial cultures were adjusted to an optical density at 600 nm (OD₆₀₀) corresponding to 1x106 colony-
forming units (CFU)/mL, based on spectrophotometer readings. A 10 µL aliquot of each bacterial suspension was
inoculated into each well containing the antibiotic dilutions, resulting in a final volume of 210 µL per well. The inoculated
96-well plates were incubated at 37°C for 24 hours. After incubation, we quantified bacterial growth by recording the
absorbance at 600 nm using a Tecan plate reader. Each MIC and MLC assay was performed using three independent
biological replicates, each with at least two technical replicates, for a total of n = 7 measurements per antibiotic per strain.

To determine MLCs, an aliquot of 10 ul from each well of the 96-well plate used for MIC determination was transferred
into a new 96-well plate containing fresh culture broth (MRS or LB, depending on the strain tested). The plate was then
incubated under the same conditions described above, and bacterial growth was assessed by measuring OD₆₀₀.

For each MIC/MLC assay, absorbance at OD₆₀₀ was measured for all wells after incubation. To correct for background,
the OD₆₀₀ value of the corresponding media-only control (MRS without bacteria) was subtracted from each well.
Subsequently, these background-corrected OD₆₀₀ values were normalized to the average OD₆₀₀ of the bacterial growth
control wells containing MRS broth without antibiotics. This two-step normalization allowed for direct comparison of
bacterial growth across different antibiotic concentrations and strains.

Table 1. Classification and Spectrum of Selected Antibiotics1

Antibiotic Type / MOA Spectrum

Kanamycin
Aminoglycoside /

30S ribosome inhibitor
Broad-spectrum (Gram-negative, some Gram-positive)

Vancomycin Glycopeptide / Cell wall biosynthesis
inhibitor Narrow-spectrum (Primarily Gram-positive)

Ampicillin β-lactam / Cell wall biosynthesis inhibitor Broad-spectrum (Gram-positive, some Gram-negative)

Chloramphenicol
Amphenicol /

50S ribosome inhibitor
Broad-spectrum (Gram-positive and Gram-negative)

Neomycin
Aminoglycoside /

30S ribosome inhibitor
Broad-spectrum (Gram-negative, some Gram-positive)

Geneticin
Aminoglycoside /

30S ribosome inhibitor
Broad-spectrum (Primarily Gram-negative, some Gram-
positive)

1Based on (Murray et al. 2021)
 

Reagents
This study used three bacterial strains: 1) Lactiplantibacillus plantarum isolated from the gut of wild-type Drosophila
melanogaster flies (Obadia et al. 2017), kindly provided by Dr. William Ludington (Carnegie Science); 2) Escherichia
coli DH5α kindly provided by Dr. Jose A. Rodriguez Martinez (University of Puerto Rico Rio Piedras) and 3)
Lactiplantibacillus plantarum ATCC 14971. Both E. coli DH5α and L. plantarum Lp39 ATCC 14917 are commercially
available.

We used the Lactobacilli De Man, Rogosa, and Sharpe (MRS) broth (BD Difco) for L. plantarum cultures and Luria Broth
(LB) (Sigma-Aldrich) for E. coli cultures. All cultures were done in sterile 96-well plates clear flat-bottom and OD600
was analyzed using Tecan Plate Reader.

The antibiotics tested were kanamycin, vancomycin, ampicillin, chloramphenicol, neomycin, and geneticin (Gold Bio
Technology). Antibiotic stock solutions were prepared at a concentration of 1024 μg/mL in sterile double-distilled water
and 2-fold serially diluted in MRS or LB medium as required. Chloramphenicol stock solution was prepared at the same
concentration but dissolved in 95% ethanol instead of water.
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