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Abstract
Gene regulatory changes acting cis and trans to a gene can be inferred with allele-specific expression (ASE) transcriptomes
from interspecies and inter-population hybrids and their parents. Problems of mapping bias and excessive information loss,
however, can arise unintentionally from cumbersome analysis pipelines. We introduce CompMap, a self-contained method in
Python that generates allele-specific expression counts from genotype-specific alignments. CompMap sorts and counts reads,
not just SNPs, by comparing read-mapping statistics to parental alignments within homologous regions. Ambiguous
alignments resolve proportionally to allele-specific counts or statistically using a binomial distribution. Simulations with
CompMap show low error rates in assessing regulatory divergence.
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Figure 1. Accuracy in allele-specific expression (ASE) increases with protein-coding divergence using CompMap:

a) Biplot of log2 raw read counts between “true” allele-specific counts using featurecounts and “mixed” read counts using
CompMap. b) Histograms of the difference in log2-fold-change for ASE between featurecounts and CompMap (low neutral
divergence ds=0.001: mean=0.0057, sd=0.508; moderate neutral divergence ds=0.01: mean=0.003, sd=0.068; high neutral
divergence ds=0.1: mean=0.0017, sd=0.009). c) Estimates of the false negative error rate (blue), false positive error rate
(green), and total error (open purple) to differential expression between alleles, and d) mean false negative rate across different
regulatory divergence categories. See McManus et al. (2010) for a complete list of regulatory divergence categories. The “y”
axis on c and d is based on the percent error plotted on a log10 scale.

 

6/2/2025 - Open Access



 

Description
Geneticists' long-standing quest to understand functional variation within genomes has led to the appreciation that changes in
regulatory regions are crucial in fine-tuning developmental controls of gene expression to influence phenotypes, in addition to
the effects of structural changes in protein-coding genes (The ENCODE Project Consortium, 2012; Signor and Nuzhdin,
2018). Non-coding mutations to cis-regulatory elements that are localized close to a gene and transregulatory factors that are
encoded at a distant location in the genome provide the genetic variation for expression of a focal gene, which, in turn, can
drive adaptive divergence between populations and between species (Jones et al., 2012; Wray, 2007). However, identifying
genetic variants with cis-acting or trans-acting regulatory effects presents a serious challenge, as it is difficult to disentangle
without explicit allele-specific expression (ASE) information (Signor and Nuzhdin, 2018).

 
Current ASE approaches include lengthy pipelines with multiple dependencies aimed at within-species datasets (Rozowsky et
al., 2011), tissue-specificity (Pirinen et al., 2015), and cross-population samples (Fan et al., 2020), usually requiring reads to be
mapped to a single genotype-specific reference, followed by variant-calling and phasing. That said, the field has been growing
rapidly in the last decade, resulting in highly accurate tools (e.g., van de Gejin et al., 2015; Raghupathy et al., 2018; Adduri
and Kim, 2024). Here, we present CompMap, a simple, self-contained, variant-calling-free Python tool for counting reads in
ASE datasets. The motivation for developing CompMap stems from the need for a tool that circumvents complex
bioinformatic pipelines while avoiding the limitations of variant-calling and generates read counts compatible with other
downstream read-counting software.

Methods
Software

The Python code with examples and installation instructions is available on the GitHub repository in "Extended Data". In
brief, CompMap parses two F1 hybrid BAM files with RNA-seq reads mapped to each parental genome simultaneously and
compares the alignment quality of each read against both references. Allele-specific reads are then "competitively" assigned,
based on their relative mapping scores, and counted. CompMap is fully implemented in Python, relying on the pysam API
library to read and parse BAM files and numpy (e.g., for binomial distribution corrections). It requires the following basic
input files:

BAM files with F1 hybrid (offspring) RNA-seq data mapped to each parental genotype

BED files with genomic coordinates of the genes of interest, one per parental genotype

Preferably, BAM files are sorted and indexed. The 4th column of BED files should include the gene name and match for
homologous regions between parental genomes (i.e., same name for both BED files). The -h or --help argument will print
descriptions and other information to the screen. The two most important arguments are --AS_tag and --NM_tag, which
indicate labels for the alignment score and number of mismatches tags, respectively. By default, CompMap will use tags from
the STAR aligner (Dobin et al., 2012). The user can specify read-tag labels of different aligners, such as BWA (Li and Durbin,
2010) and Bowtie2 (Langmead and Salzberg, 2012). The --star argument will apply the NH tag when looking for multiple read
matches, which may improve speed. Finally, users can specify the --binom tag to assign ambiguous read counts
probabilistically to either one of the parental alleles. The binomial probability p describes the fraction of non-ambiguous reads
with better matches to one parental genome for the corresponding gene (1-p better matching the other parental genome), and
size defines the total number of ambiguously matching reads. The default behavior deterministically allocates reads with
proportions p and 1-p without using binomial sampling.

We validated the read-counting performance of CompMap by comparing it to two commonly used differential expression
tools: featureCounts (Liao et al., 2014) and HTseq-counts (Anders et al., 2015). Our results replicate the results of
featureCounts and therefore recommend using this tool for read-counting parental RNA-seq data which can be used in
combination with CompMap.

 
Validation on simulated data

Gene length and sequence differences between alleles can potentially impact the power to detect and quantify ASE with
accuracy. To validate our approach, we simulated protein-coding sequence datasets of homologous alleles with synonymous
site divergence. We neglected divergence at nonsynonymous sites because of their rarity in biological data of close relatives
and to avoid assumptions about the strength and direction of selection. The presence of nonsynonymous differences in real
data will make our power analysis conservative with respect to detecting and quantifying ASE.

 

6/2/2025 - Open Access



 

The simulation procedure first drew 1000 random protein lengths from a Gamma distribution (scale=1000, shape=1.35;
minimum length 300 aa). Non-stop codons were picked at random to form a "transcript", all of which started with the
Methionine coding "ATG" and ended with any of the three stop codons. Synonymous substitutions were imposed to create a
divergent version of every "transcript": each 4-fold, 3-fold, and 2-fold degenerate codon was allowed to mutate to a
synonymous codon, selecting alternate codons with equal probability. Synonymous divergence used one of three rates: (1)
high ds=0.1 substitutions/site (exemplifying interspecific variation; e.g., between species of Caenorhabditis), (2) moderate
ds=0.01 substitutions/site (exemplifying variation between divergent populations), and (3) low ds=0.001 substitutions/site
(exemplifying intraspecific variation; e.g. humans). CompMap's GitHub repository contains the code for this simulation
procedure in "Extended Data".

 
For each "allelic" transcript sequence, we then simulated RNA-seq reads using the R package polyester (Frazee et al., 2015).
Fold-changes in expression were randomly sampled from an exponential distribution with sign (up- or down-regulation)
assigned randomly. These generated data defined "true" ASE counts for comparison to estimates derived from CompMap.
Similarly, we generated RNA-seq datasets representing expression differences in each homozygous parent. Fold-change values
between "alleles" and "parents" were drawn from independent distributions.

To validate ASE counts from CompMap, we combined allele-specific reads into a single FASTA file for each replicate and
mapped them to each transcript reference using BWA-MEM (Li and Durbin, 2010). We then generated BED files with
coordinates for each transcript. The resulting BAM and BED files were fed to CompMap to perform ASE counts using the --
NM_tag with NM, providing the BWA-specific read tag for number of mismatches.

 
Standard read counts for "parental" and true "allele" read data were performed with featureCounts (Liao et al., 2014). Raw
read counts were then analyzed in R, and differential expression analyses were conducted with DESeq2 (Love et al., 2014).
We followed McManus et al. (2010) to statistically assign genes to different regulatory divergence categories (e.g., cis-only,
trans-only, cis-trans compensatory, cis x trans).

Statistical Analyses

CompMap recovered high accuracy in allele-specific counts for all three simulated protein-coding datasets that spanned a 100-
fold range of divergence (Figure 1a). Count accuracy was highest for genes with high divergence between alleles (ds=0.1). In
the more challenging case of low divergence (ds=0.001), CompMap slightly overestimated the number of reads for a given
allele (by a factor of approximately 1.75), being most pronounced among genes with a lower magnitude of expression, as
expected. However, this effect does not strongly perturb analyses of differential expression (Figure 1b). High-divergence
alleles also show the lowest variance in the ASE log2-fold-difference between simulated allele-specific reads counted by
featureCounts and CompMap (Figure 1b). Despite the low divergence dataset yielding the widest variability in estimated
differential expression, the mean centered close to zero indicates little bias (Figure 1b).

Error rates to inferring differential expression between alleles declined approximately 10-fold with increasing divergence
(Figure 1c). The power of CompMap to accurately classify genes into different regulatory divergence categories is greatest
with high divergence between alleles (<2% false negative rates for the ds=0.1 dataset; <6% for intermediate ds=0.01) (Figure
1d). As expected, the highest inaccuracy occurred with low divergence (ds=0.001 false negative rates ~20%).

Consequently, ASE reliability will be greatest for biological studies involving alleles with high sequence divergence, which
will be challenging with neutral allele divergence ~0.1% (e.g., ds=0.001), as within humans (Perry et al., 2012) and
Caenorhabditis elegans (Andersen et al., 2012). Moreover, although our specific use case involved high-quality reference
genomes from C. briggsae and C. nigoni (Sánchez-Ramírez et al., 2021), we anticipate that differences in reference genome
quality might also lead to mapping biases and other potential issues. Essential for such cases is a simulation framework for
validation, as implemented in CompMap, to assess the power to quantify ASE.

 
CompMap's competitive read-mapping approach is sensitive and accurate, given sufficiently dense sequence differences
between alleles. With CompMap, we 1) introduced a framework to reliably assess the power of recovering per-gene ASE read
counts; 2) developed R code for simulation testing of coding sequence divergence; and 3) showed the best ASE inference with
≥1% allelic synonymous divergence. CompMap is ideal for RNA-seq datasets derived from interspecies hybrids (Sánchez-
Ramírez et al., 2021), as well as within-species analysis of systems with high genetic diversity, including Drosophila and
Caenorhabditis (Cutter et al., 2013).

Acknowledgements: We thank the SciNet Consortium at the University of Toronto and Compute Canada for providing access
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Extended Data
Description: GitHub repository. Resource Type: Software. File: CompMap-1.1.zip. DOI: 10.22002/07w0a-qtx12
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