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Abstract
Disruption of the human microbiome has emerged as a major contributing factor in the etiology of neurodegenerative disease.
Previous work suggests a positive correlation between periodontal inflammation and Parkinson's disease. Here, we show that
feeding C. elegans animals Porphorymonas gingivalis causes neurodegeneration that is not additive with neurodegeneration
induced by the Parkinson's-associated protein, α-synuclein. In contrast, α-synuclein-expressing animals fed P. gingivalis show
additional disruption in basal slowing, suggesting that P. gingivalis induces neurodegeneration while altering neuronal function
of extant neurons. Though the mechanism is unclear, these results suggest a relationship between P. gingivalis and
neurodegeneration that warrants further investigation.
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Figure 1. Cultivation of C. elegans with P. gingivalis results in neurodegeneration and impairs basal slowing response:

Cultivation of C. elegans with P. gingivalis induces neurodegeneration and reduces neuronal function[BM1] . (A) Animals
were cultivated with either standard E. coli or P. gingivalis and analyzed for neurodegeneration 7 days post-hatching (n=30
animals analyzed in 3 replicates) (B) Representative images of neurodegeneration. Arrows indicate neurons while arrowheads
indicate degenerating neurons or regions where neurons are missing. (C) Animals were cultivated with either standard E. coli
or P. gingivalis and analyzed for basal slowing (n=30 animals analyzed in 3 replicates). (D) Percent slowing was calculated by
dividing the difference in slowing between fed and unfed animals by the number of body bends/20s when fed. Data
represented as mean and error bars represent standard deviation. *=p<0.001 according to One-Way ANOVA with a Tukey's
post hoc test.
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Parkinson's disease (PD) is the one of the most common neurodegenerative diseases, characterized by progressive
neurodegeneration of the substantia nigra pars compacta (SNPC) and the formation of intracellular inclusions that contain
insoluble α-synuclein (Kim et al., 2019; Prasad et al., 2023). While the etiology of PD is not fully understood, it is clear that a
multitude of genetic and environmental variables contribute to risk and onset. For example, multiplication of the α-synuclein
locus results in autosomal-dominant Parkinson's disease (Polymeropoulos et al., 1997; Singleton et al., 2003) and single
nucleotide polymorphisms (SNPs) in distinct loci may increase risk (Harrington et al., 2011; Griffin et al., 2018).
Environmental factors, such as secondary metabolites of environmental microbes, have been shown to induce unfolded protein
stress responses and mitochondrial damage (Bornhorst et al., 2014; Martinez et al., 2015, 2017b) that may also lead to disease
(Kim et al., 2018).

Porphorymonas gingivalis has been identified in postmortem analysis of both Parkinson's and Alzheimer's disease patients
(Jungbauer et al., 2022), suggesting a relationship between periodontal disease and neurodegenerative disease. Oral
administration of P. gingivalis increases gut permeability, immune responses (Feng et al., 2020), and dysbiosis of gut
microbiota (Arimatsu et al., 2014; Nakajima et al., 2015). Indeed, gut dysbiosis has been associated with Parkinson's disease
(Campos-Acuña et al., 2019; Kim et al., 2019). These highlight the relationship between neurodegeneration and microbial
invasion, which may be occurring from major arteries (Mougeot et al., 2017).

While it is becoming increasingly evident that inflammation contributes to neurodegeneration (Gerhard et al., 2006; Brochard
et al., 2009; Williams et al., 2021), the effect of oral microbiota on neurodegeneration remains unclear. To examine whether P.
gingivalis has a direct effect on neurodegeneration, we utilized a C. elegans model of α-synuclein toxicity. In this model,
expression of α-synuclein in the dopaminergic neurons leads to progressive neurodegeneration of the 6 dopaminergic neurons
of the head, which are observed by constitutive GFP expression (Martinez et al., 2017a). Because the C. elegans diet consists
of bacteria, they can be fed P. gingivalis and examined for neurodegeneration. Previous work in this model has identified
environmental microbial factors that affect neurodegeneration (Martinez et al., 2015, 2017b), demonstrating its utility in
examining the cellular and molecular effects of environmental microbes on neurodegeneration. Additionally, because C.
elegans have neither vasculature nor NF-κB, we can examine neurodegeneration caused by bacteria apart from stereotypical
hallmarks of inflammation. We therefore hypothesized that feeding P. gingivalis to C. elegans animals would result in
neurodegeneration and that neurodegeneration would be exacerbated by expression of α-synuclein.

In a previous study, animals were treated with Streptomyces spp.-conditioned media and examined for neurodegeneration
(Caldwell et al., 2009). After 6 days of exposure, about 25% of animals exposed to S. venezuelae exhibited neurodegeneration,
while neurodegeneration was observed in only 6% and 7% of animals exposed to S. griseus and S. coelicolor media,
respectively. To determine whether P. gingivalis alone induces neurodegeneration, we first examined the effect of P. gingivalis
on animals expressing GFP alone. As expected, 100% of wild-type GFP-expressing animals cultivated on standard E. coli
(OP50) exhibited all 6 dopaminergic neurons, however, when cultivated on lawns of P. gingivalis, only about 60% of wild-
type GFP-expressing animals exhibited all 6 dopaminergic neurons (Figure 1A and B).

To examine whether the effect of P. gingivalis were synergistic with α-synuclein, we utilized a C. elegans strain co-expressing
α-synuclein in the dopaminergic neurons. When cultivated on OP50, only about 50% of animals co-expressing α-synuclein
exhibit all 6 dopaminergic neurons (Figure 1A and B). However, when animals co-expressing α-synuclein were cultivated on
P. gingivalis, there was no statistically significant difference in neurodegeneration compared to α-synuclein co-expressing
animals cultivated on OP50, suggesting the neurodegenerative effects of P. gingivalis and α-synuclein are neither additive nor
synergistic, perhaps operating through similar cellular pathways.

It is possible that secondary metabolites secreted by P. gingivalis have similar cellular targets as α-synuclein. For example,
nematodes over-expressing α-synuclein exhibit dysfunctions in mitochondrial DRP-1 (Martinez et al., 2018) and infection of
P. gingivalis in mice results in mitochondrial dysfunction through Drp-1 (Xu et al., 2021). Similarly, secretion of a secondary
metabolite by Streptomyces venezuelae increases drp-1 expression and may increase cell death through DRP-1 (Kim et al.,
2018). Gingipains secreted by P. gingivalis have been observed in the bloodstream of some Parkinson's disease patients
(Adams et al., 2019). Some gingipains have been observed to bind to mitochondria (Boisvert and Duncan, 2010), promoting
mitochondrial dysfunction through Drp1 (Xu et al., 2021). However, if it were the case that P. gingivalis were causing
neurodegeneration in C. elegans through DRP-1, we would expect to see an additive effect of neurodegeneration such as was
observed in S. venezuelae (Martinez et al., 2015). Indeed, the gingipain adhesion protein RgpA binds to host mitochondria to
block apoptosis (Boisvert and Duncan, 2010), whereas S. venezuelae appears to stimulate apoptosis. In contrast, gingipains
from the P. gingivalis strain W83 disrupt cell adhesion and promote apoptosis by cleavage of host cadherins (Sheets et al.,
2006).

While we observed no additive effects of P. gingivalis and α-synuclein on neurodegeneration, it is possible that surviving
neurons may nonetheless exhibit loss of function. This phenomenon has been demonstrated in other models, such as with loss
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of function despite neuroprotection in a glutamatergic model of β-amyloid and ApoE co-expression (Griffin et al., 2019). To
test this, we examined basal slowing, which is influenced by the dopaminergic system (Sawin et al., 2000). When unfed,
nematode locomotory rate is enhanced; upon encountering food, locomotion is depressed. Thus, perturbations in dopaminergic
signaling affected basal slowing. When encountering E. coli, locomotory rate typically decreases. In contrast, when fed
Bacillus subtilis, animals appeared to increase locomotory frequency, while there is no change when fed Pseudomonas
aeruginosa (Rivard et al., 2010). Animals cultivated on P. gingivalis had a statistically significant lower basal locomotory rate
compared to animals cultivated on OP50 (Figure 1C). More specifically, when examining the percent slowing between animals
off food and on food, α-synuclein co-expressing animals had a significantly smaller percent slowing in basal slowing when
cultivated on P. gingivalis when compared to OP50-fed animals (Figure 1D), suggesting an additive effect on loss of
dopaminergic function for surviving neurons. Thus, basal slowing was perturbed in all populations cultivated on P. gingivalis
compared to animals cultivated on OP50.

Some gingipains target the endolysosomal system by exploiting clathrin-dependent endocytosis (Boisvert and Duncan, 2008).
Disruptions in the endolysosomal system increase neurodegeneration in Parkinson's models (Harrington et al., 2011; Griffin et
al., 2018) and disruptions in clathrin-dependent endocytosis increase neurodegeneration in Alzheimer's models of disease
(Treusch et al., 2011; Griffin et al., 2018). Additionally, perturbations in the endolysosomal system may also affect the
recycling of dopamine receptors at the cell surface. Recycling of D1 receptors is enabled through a C-terminal recycling signal
with homology to β2 adrenergic receptors and μ opioid receptors (Vargas and Von Zastrow, 2004). Interference with the C-
terminal region results in enhanced signaling (Cao et al., 1999; Tanowitz and von Zastrow, 2003), demonstrating D1 receptor
expression at the plasma membrane can be impaired by endocytosis. Alternatively, disruptions in endocytosis may affect
recycling of the dopamine active transporter (DAT) at the cell surface. For example, a previous study found that a non-
functional mutation in RAB39B, which localizes to the Golgi and early endosomes to coordinate recycling of DAT-1 in C.
elegans, decreased dopaminergic signaling when probing cholinergic behavior modulated by dopaminergic signaling (Zeng et
al., 2024). Thus, gingipains may diminish dopaminergic signaling at the cell surface by stimulating endocytosis of receptors or
DAT.

While the cause of Parkinson's disease is not clear, it is evident that multiple genetic and environmental factors contribute to
its etiology. Between 2011 and 2020, the prevalence of periodontitis was estimated to be about 62% in adults and severe
periodontitis is estimated to be 23.6% globally (Trindade et al., 2023). These numbers are alarming, particularly considering
some reports have identified a positive correlation between periodontal inflammation and Parkinson's disease (Yilmaz et al.,
2023). As such, the risk of P. gingivalis should not be overlooked, considering observations of microbial presence in the
arteries and brain. Here, we show that exposure to P. gingivalis directly causes neurodegeneration in an in vivo model of
neurodegeneration. Taken together, these results suggest that the relationship between P. gingivalis periodontal disease and
Parkinson's disease warrants further investigation.

Methods
Culture Preparation and C. elegans Husbandry

E. coli (OP50) was prepared by inoculating LB broth and incubated overnight at 37°C. P. gingivalis strain W83 was acquired
from ATCC and cultured in New Oral Spirochete Broth (NOS; ATCC medium 1494) in an anaerobic chamber with a gas pack
and incubated with shaking at 37°C up to overnight.

GFP-expressing animals (BY250 [vtIs7(dat-1p::GFP)]) and α-synuclein co-expressing animals (UA44 [baIn11(Pdat-1::α-syn,
Pdat-1::GFP)]) were a generous gift from Dr. Guy Caldwell. C. elegans hermaphrodite animals were maintained on E. coli
lawns, according to standard procedures (Brenner, 1974), and synchronized populations were analyzed for neurodegeneration
at day 7 post-hatching, unless otherwise indicated. Briefly, animals for analysis were synchronized by a 3 h egg-lay on
bacterial lawns containing either standard E. coli cultures (as a control), or P. gingivalis. Animals were examined for
dopaminergic neurodegeneration at day 7 post-hatching.

Neuron Analysis

Animals were immobilized using 3mM levamisole on glass cover slips, inverted onto 2% agarose pads on microscope slides,
and observed by fluorescent microscopy. An animal was scored as normal if all 6 dopaminergic neurons in the head were
present and without malformations such as neurite blebbing, cell body rounding, cell loss, or dendrite or axon loss. Each
analysis was replicated at least three times with 30 animals per condition (30 animals × 3 trials = 90). Images were acquired
using an Olympus BX41 equipped with a FITC filter cube and MoticamX camera driven by Motic Images Plus 3.1.

Basal Slowing Response Assay
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Basal slowing response was performed as previously described (Sawin et al., 2000), with few modifications. The number of
body bends in 20 seconds was recorded for well-fed animals and starved animals as they entered a bacterial lawn. Briefly, 30
well-fed animals were removed from plates, washed twice in S basal buffer, and transferred to the center of a locomotory assay
plate. This plate has ring-shaped bacterial lawn and animals are transferred to the center of the clear zone within the ring. Five
minutes after transfer, the number of body bends in 20 seconds was recorded for each of the animals on the plate as they
entered the bacterial lawn. To test starved animals, 30 animals were washed twice in S basal buffer, transferred to NGM plates
with no bacteria, and incubated for 30 minutes. After food deprivation, animals were washed off the plates and transferred to
the center of an assay plate seeded with OP50 bacteria to measure locomotory rate similar to previously described (Sawin et
al., 2000). Percent slowing was calculated by dividing the difference in slowing between fed and unfed animals by the number
of body bends/20s when fed.

Table 1. Strains used in this study.

Strain Genotype Source

BY250 vtIs7[Pdat-1::GFP] Martinez, 2017

UA44 baIn11[Pdat-1::α-syn, Pdat-1::GFP] Martinez, 2017
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generous gifts from Drs Kim and Guy Caldwell at the University of Alabama.
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