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Abstract
Attaching and effacing (A/E) pathogens adhere to intestinal cells (attachment) and destroy their microvilli (effacement). The
A/E pathophenotype is encoded by a cluster of genes that are organized into the pathogenicity island called locus of enterocyte
effacement (LEE). While transcriptional regulation of the LEE has been extensively interrogated in A/E pathogens,
posttranscriptional regulation remains poorly understood. The RNA-binding protein Hfq and Hfq-dependent regulatory RNAs
(sRNAs) play important roles in regulating the LEE posttranscriptionally. In a recent screen, we identified the Hfq-dependent
sRNA DsrA as a novel riboregulator of the LEE in the A/E pathogen enteropathogenic Escherichia coli. Our findings suggest
that DsrA globally silences the LEE by negatively regulating transcription of the LEE1-encoded master regulator Ler. The
repression of LEE1 is mediated through the stationary phase sigma factor, RpoS. Interestingly, our results contrast with what
has been previously reported on the role of DsrA in EHEC, where the sRNA activates transcription from the LEE1 promoter in
an RpoS-dependent manner. The contrasting regulatory role of DsrA in EPEC and EHEC underscores the need for
experimental validation of sRNA networks within each lineage, rather than inferring their function based on their roles in
related bacteria.
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Figure 1. DsrA negatively regulates the LEE in the enteropathogenic Escherichia coli (EPEC) strain E2348/69 in an
RpoS-dependent manner.:

Overexpression of dsrA repressed the synthesis of the LEE5-encoded protein, Tir, as determined by Western blotting (A). The
decrease in Tir levels resulted from a decrease in the tir mRNA levels, as determined by qRT-PCR (B). Besides LEE5, DsrA
also repressed the steady-state mRNA levels specified from the LEE2-4 operons (B). Gene expression from the LEE2-5
operons is coordinately controlled by the Ler-GrlA-GrlR regulatory pathway, suggesting that one or more of these
transcriptional regulators may be targeted by DsrA. Indeed, overexpression of dsrA repressed the synthesis of the LEE1 -
encoded ler mRNA and the LEE7-encoded grlRA mRNA (C). The reduction in grlA resulted in the observed decrease in GrlA
protein levels (D). DsrA did not affect β-galactosidase activity from a grlR’-‘lacZ (H) and ler’-‘lacZ (I) translational fusions,
which harbor the 5’ UTR and the first 45 nucleotides of the grlR (E) and ler ORF (F), respectively, suggesting that DsrA does
not base-pair to the 5’ leader regions of these mRNAs. Interestingly, DsrA inhibited β-galactosidase activity from a ler’-lacZ+

transcriptional fusion (J) in which the LEE1 promoter drives transcription of the full length lacZ gene (G), suggesting that
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DsrA indirectly controls transcription from the LEE1 promoter by targeting a transcriptional factor. DsrA base-pairs to the 5’
UTR of the rpoS mRNA in the E. coli strain K-12 and exposes the ribosome binding site, which allows the ribosome to dock
onto the mRNA and stimulate translation of RpoS (L). The RNA-coding region of DsrA as well as the 5’ UTR of rpoS,
spanning the DsrA base-pairing region all the way to the start codon of rpoS, is conserved between the EPEC strain E2348/69
and the E. coli strain K-12 (L). This implies that, in EPEC too, DsrA is predicted to base-pair to the rpoS transcript (L).
Consistent with the base-pairing, overexpression of dsrA positively regulated the production of RpoS in EPEC (M). Finally,
overexpression of rpoS repressed transcription from the LEE1 promoter, mimicking the repressive effect of dsrA (K). Model
for DsrA-dependent regulation of the LEE (N).

Description
Attaching and Effacing (A/E) pathogens infect individuals of all age groups and cause significant healthcare concerns globally
(Mellies et al., 2007, Bhatt et al., 2016, Marshall et al., 2020). Enteropathogenic Escherichia coli (EPEC) and
enterohemorrhagic E. coli (EHEC) are the two prototypical members of the A/E morphotype. Other members of this group
include Escherichia albertii and the mouse pathogen Citrobacter rodentium (Deng et al., 2004, Bhatt et al., 2019, Egan et al.,
2019). A/E pathogens share a set of virulence factors, although there are differences between the diverse lineages as well. The
most prominent virulence determinant that is conserved between them is the pathogenicity island locus of enterocyte
effacement, that imparts to these pathogens their signature A/E pathophenotype (Deng et al., 2001, Pallen et al., 2005, Franzin
& Sircili, 2015, Ooka et al., 2015, Furniss & Clements, 2018, Bhatt et al., 2019). The LEE is a ~35-40 kb genomic segment
that is organized into 7 polycistronic operons (LEE1-7) and numerous monocistronic transcription units (Franzin & Sircili,
2015, Bhatt et al., 2016). The LEE codes for a type 3 secretion system (T3SS), which upon assembly directly connects the
bacterial cytoplasm to that of the intestinal cell, enabling the bacterium to inject effectors into the infected cell. The effector
molecules are mechanistically and functionally diverse and primarily function to disrupt and manipulate host signal
transduction pathways to ultimately aid bacterial colonization, survival, proliferation, and eventual dissemination (Croxen &
Finlay, 2010, Deng et al., 2010).

Transcriptional regulation of the LEE has been systematically characterized in A/E pathogens, and, for the most part,
conserved transcriptional factors govern the LEE by similar mechanisms in the different members. For instance, the LEE1-
encoded master transcriptional regulator Ler activates gene expression from the other transcription units of the LEE, including
LEE7 that specifies the transcriptional activator, GrlA, and its cognate anti-activator, GrlR (Deng et al., 2004, Barba et al.,
2005, Padavannil et al., 2013, Egan et al., 2019). GrlA feeds back to further activate transcription from LEE1, whereas GrlR
binds to GrlA and inhibits its activity (Jobichen et al., 2007, Huang & Syu, 2008, Islam et al., 2011, Padavannil et al., 2013).
This regulatory circuit is conserved in all the members of the A/E family. Conservation of transcriptional regulatory circuits
also extends to shared non-LEE encoded transcriptional factors (Friedberg et al., 1999, Sperandio et al., 2002, Yona-Nadler et
al., 2003, Sircili et al., 2004, Sharp & Sperandio, 2007). Beyond transcriptional regulation, LEE gene expression is further
refined by posttranscriptional regulators such as the RNA chaperone protein Hfq that functions in concert with small
regulatory RNAs (Hansen & Kaper, 2009, Shakhnovich et al., 2009, Kendall et al., 2011, Bhatt et al., 2017, Egan et al., 2019).
The primary mechanism by which Hfq exerts its effect is as a molecular matchmaker, whereby Hfq simultaneously binds to an
mRNA at one surface and an sRNA at another, bringing the two RNAs in proximity to sample each other (Updegrove et al.,
2016, Santiago-Frangos & Woodson, 2018). Complementary base-pairing between the sRNA and mRNA enables the former
to regulate gene expression from the latter, which typically occurs by affecting mRNA stability and/or translation (Gottesman
et al., 2001, Gottesman & Storz, 2010). To date, dozens of Hfq-dependent sRNAs have been identified that either directly or
indirectly regulate the LEE in A/E pathogens (Bhatt et al., 2017, Bhatt et al., 2017, Egan et al., 2019, Melson & Kendall,
2019, Pearl Mizrahi et al., 2021, Jia et al., 2023, Muche et al., 2023). Notably, regulatory circuits that are controlled by Hfq
and Hfq-dependent sRNAs show varying degrees of evolution in different lineages of A/E pathogens. For instance, the three
Hfq-dependent sRNAs, MgrR, RyhB, and McaS, that were originally identified as regulators of the LEE of EPEC, are
predicted to regulate the LEE identically in E. albertii (Bhatt et al., 2017, Egan et al., 2019). However, the Hfq-dependent
sRNA Spot42 which regulates the LEE by affecting biosynthesis of the ler-inducer indole in EPEC is not predicted to regulate
the LEE of E. albertii because the genes involved in indole biosynthesis have undergone genetic decay in the latter (Bhatt et
al., 2017, Egan et al., 2019). Similarly, Hfq can function either as an activator or a repressor of the LEE depending on the
genetic background. In the EPEC strain E2348/69 and in the EHEC strain EDL933, Hfq negatively regulates the LEE;
however, in the EHEC strain 86-24 Hfq activates the LEE (Hansen & Kaper, 2009, Shakhnovich et al., 2009, Kendall et al.,
2011, Bhatt et al., 2017). Thus, regulatory circuits controlled by Hfq and Hfq-dependent sRNAs are evolutionarily flexible and
must be experimentally verified in the different pathotypes.

In a recent screen, our lab isolated the Hfq-dependent sRNA, DsrA, as a repressor of the LEE-encoded protein Tir in EPEC
(Fig. 1A). Specifically, controlled overproduction of DsrA from the plasmid pDsrA negatively regulated the synthesis of Tir
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when EPEC was cultivated in lysogeny broth – a medium that mimics environmental conditions that repress the LEE.
Interestingly, deletion of dsrA did not significantly affect Tir synthesis under our experimental conditions. pDsrA, a derivative
of the empty parental plasmid pBR-plac, expresses dsrA from the PllacO1 promoter. The synthetic PllacO1 promoter is tightly
regulatable by the Lac repressor and inducible by IPTG over a >600-fold range (Lutz & Bujard, 1997, Guillier & Gottesman,
2006, Mandin & Gottesman, 2010). Throughout this study, the effects of overexpressing DsrA from pDsrA were quantified
with reference to the control vector pBR-plac. Consistent with the reduced protein levels, the mRNA level of tir, which is
encoded in the LEE5 operon, was diminished upon overproduction of DsrA (Fig. 1B). Besides LEE5, many of the other LEE
operons, particularly LEE2-4, also encode structural proteins and effector molecules of the T3SS (Franzin & Sircili, 2015,
Platenkamp & Mellies, 2018). Thus, we assessed if gene expression from the other structural operons was dysregulated. This
was done by assaying the abundance of a representative transcript encoded within each of these operons. DsrA globally
silenced gene expression from each of these operons (Fig. 1B). Gene expression from the LEE2-5 operons is coordinately
regulated in a hierarchical manner by the Ler-GrlA-GrlR pathway (Mellies et al., 2007, Bhatt et al., 2016). Therefore, we
assayed whether expression of one or more of these regulators was affected by DsrA. Overexpression of DsrA negatively
regulated the synthesis of each of the three transcripts (Fig. 1C), suggesting that DsrA-dependent repression of LEE2-5 occurs
indirectly by controlling the synthesis of Ler, GrlR, and GrlA. Consistent with the observed reduction in grlA mRNA, the
observed GrlA protein levels were also diminished in the DsrA overexpressor (Fig. 1D).

In EPEC, grlR and grlA are cotranscribed from the LEE7 promoter to generate the bicistronic grlRA mRNA (Barba et al.,
2005), whereas ler is encoded by the first gene in the LEE1 operon (Mellies et al., 1999, Elliott et al., 2000). Many Hfq-
dependent sRNAs, including DsrA, exert their regulatory effects by base-pairing to target mRNAs, often within the 5’
untranslated leader region (UTR) of the first open reading frame (ORF) of the mRNA (Bhatt et al., 2017). To test whether
DsrA directly regulates the LEE by duplexing with either the 5’ UTR of grlR or ler, translational fusions to lacZ were
engineered. Briefly, the entire 5’ UTR of grlR or ler along with the first 45 nucleotides of their respective ORF were fused in-
frame to a truncated ‘lacZ gene that lacks its 5’ UTR and some of the N-terminal codons, including the start codon (Fig. 1E &
1F). The grlR’-‘lacZ and the ler’-‘lacZ chimeric genes were recombineered downstream of the araBAD promoter in the
genetic background of the E. coli strain PM1205, which is a derivative of the K-12 MG1655 lineage (Fig. 1E & 1F). This
generates a reporter strain in which the ‘lacZ gene is under the transcriptional control of the heterologous araBAD promoter
and posttranscriptional control of the 5’ UTR of grlR or ler. Furthermore, the engineering of these fusions in E. coli K-12
instead of EPEC enabled us to uncouple the interregulatory control that Ler and GrlR/GrlA exert on each other.
Overexpression of DsrA did not significantly affect β-galactosidase activity from either the GrlR’-‘LacZ (Fig. 1H) or
Ler’-‘LacZ (Fig. 1I) translational fusions, suggesting that DsrA does not base-pair to the 5’ UTR of either grlR or ler. Next,
we overexpressed DsrA in a reporter E. coli K-12 strain that harbors a transcriptional fusion in which the LEE1 (ler) promoter
drives transcription of the lacZ gene. Here, the lacZ gene retains its native 5’ UTR and the entire ORF (Fig. 1G). Interestingly,
DsrA repressed β-galactosidase activity from the ler’-lacZ+ transcriptional fusion (Fig. 1J), suggesting that DsrA negatively
regulates transcription from the LEE1 promoter. Since DsrA base-pairs to mRNA targets to influence translation and/or
mRNA stability, its effect on LEE1 transcription must be indirect. This suggests that DsrA affects the expression of at least one
transcriptional regulator of LEE1, which is conserved between the E. coli strain K-12 and the EPEC strain E2348/69. One such
factor is the stationary phase sigma factor, RpoS.

In the E. coli strain K-12 substrain MG1655, DsrA activates the expression of RpoS. Specifically, DsrA base-pairs to the 5’
UTR of rpoS and exposes its ribosome binding site, enabling the ribosome to dock and initiate translation of RpoS while
simultaneously protecting the rpoS mRNA from degradation (Fig. 1L) (Lease et al., 1998, Majdalani et al., 1998, McCullen et
al., 2010). However, whether DsrA exerts a similar effect on the rpoS homolog in the EPEC strain E2348/69 has not been
tested. Pairwise alignment of DsrA from EPEC E2348/69 and E. coli MG1655 revealed that the sRNA is identical between the
two. Furthermore, when the 5’ UTR of the E. coli rpoS mRNA was aligned with the homologous region of rpoS from EPEC, it
was observed that the DsrA base-pairing region on rpoS was identically conserved in EPEC (Fig. 1K), suggesting that DsrA
can similarly base-pair to the 5’ UTR of rpoS and stimulate its translation in EPEC. Consistent with this prediction,
overproduction of DsrA led to an increase in the steady-state levels of RpoS in EPEC (Fig. 1M). Next, we tested whether the
repressive effect of DsrA on the LEE1 promoter was mediated via RpoS. To this end, the reporter strain harboring the
chromosomal ler’-lacZ+ transcriptional fusion was transformed with the empty vector pBAD24 or its recombinant derivative
pRpoS, that expresses rpoS from the arabinose inducible promoter araBAD. The plasmid pBAD24, like pBR-plac, provides
tight regulation with minimal basal transcription, broad induction range, and short response time for a gene under the control
of the ParaBAD promoter (Guzman et al., 1995). Regulated overexpression of rpoS repressed β-galactosidase activity from the
ler’-lacZ+ transcriptional fusion (Fig. 1K), suggesting that RpoS negatively regulates transcriptional activity from the LEE1
promoter. Notably, the basal level of β-galactosidase activity from the ler’-lacZ+ transcriptional fusion was significantly lower
in the transformant harboring the empty vector pBAD24 compared to pBR-plac. Although, both pBAD24 and pBR-plac
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harbor the pBR322 origin of replication, the former lacks the rop gene, whose protein product limits the plasmid copy number
(Guzman et al., 1995, Cronan, 2006, Guillier & Gottesman, 2006). Thus, pBAD24 and pBR-plac exist in high and low copy
numbers, respectively (Cronan, 2006). It is plausible that maintenance of pBAD24 requires considerable energy, which occurs
at the expense of other cellular processes, thus limiting them. Alternatively, the presence of arabinose, to induce rpoS from
pBAD24, may negatively regulate the LEE1 promoter activity. In the EHEC strain ZAP193, arabinose and other 5-carbon
sugars activate transcription from the LEE (Cottam et al., 2024). It is plausible that in the EPEC strain E2348/69 arabinose has
an antagonistic effect on the LEE. Controlled studies will shed more light on the precise role of arabinose in regulating the
LEE of EPEC and how this compares to its observed role in EHEC.

In summary, our results suggest that the Hfq-dependent sRNA DsrA globally silences the LEE by indirectly repressing
transcription of the LEE master regulator, Ler, via RpoS. Additionally, our findings also suggest that DsrA likely targets the
LEE1 promoter in an RpoS-independent manner because overexpression of DsrA had a more profound effect on
transcriptional repression from LEE1 promoter (β-galactosidase activity was reduced to ~17%) than overexpression of rpoS
(β-galactosidase activity was reduced to ~35%). How does RpoS control transcription from LEE1? It’s plausible that RpoS
competes with other sigma factors that may be more efficient at recruitment and/or transcriptional initiation from the LEE1
promoter. Alternatively, RpoS may indirectly repress the LEE1 promoter by regulating transcription of a transitional regulator.
Future studies in our lab are aimed at clarifying the precise mechanism by which DsrA and RpoS affect transcription from the
LEE1 promoter.

Our findings our notable in that they highlight the divergence of the regulatory role of DsrA in the two closely related A/E
pathovars, EHEC and EPEC. A previous report showed that overproduction of dsrA activates transcription from the LEE1
promoter of EHEC in an RpoS-dependent manner (Laaberki et al., 2006). By contrast, our results suggest that DsrA exerts an
antagonistic effect on the LEE in EPEC. Specifically, DsrA represses transcription from the LEE1 promoter of EPEC in an
RpoS-dependent manner. Reduced expression of ler, in turn, leads to reduced expression from the other LEE operons, which
would be expected to reduce A/E lesion formation (Fig. 1N). In A/E pathogens, regulatory pathways that are discovered in one
member are often assumed to function similarly in other members. Our results emphasize the importance of experimentally
validating these generalizations, since regulatory circuits may undergo rewiring and influence bacterial physiology. This is
especially relevant to regulatory networks that are controlled by small regulatory RNAs, since conserved regulators, such as
DsrA, may not regulate conserved targets, such as the LEE, comparably in related A/E pathogens.

Methods
Bacterial strains, plasmids, primers & media: Bacteria were streaked onto LB agar plates supplemented with ampicillin
(100 µg/mL). Individual colonies were inoculated into LB broth supplemented with the same antibiotic and grown overnight at
37˚C/250 rpm for ~16-20 hours. Thereafter, the cultures were diluted 100-fold in the same medium, induced with the
appropriate inducer, and grown to an OD600 of ~1.0. DsrA was induced by the addition of IPTG to a final concentration of 1
mM, whereas RpoS was induced by the addition of arabinose to a final concentration of 0.02%. Strains and plasmids used in
this study are listed in Table 1 and oligonucleotides used are listed in Table 2.

Chromosomal modifications: The engineering of the chromosomal ParaBAD-ler’-‘lacZ, ParaBAD-grlR’-‘lacZ, and grlA-3X-
FLAG tagged translational fusions and the PLEE1-ler’-lacZ+ transcriptional fusion has been described previously (Mellies et
al., 1999, Bhatt et al., 2009, Bhatt et al., 2017, Muche et al., 2023). The reporter strains harboring the translational and
transcriptional fusions were transformed with the parental empty vector, pBR-plac, or its recombinant derivative, pDsrA, that
expresses dsrA. Additionally, the transcriptional reporter strain was also transformed with the empty vector pBAD24 or its
derivative, pRpoS, which expresses the rpoS gene from E. coli under an arabinose inducible promoter.

β-galactosidase assay: β-galactosidase activity of the chromosomal ParaBAD-grlR’-‘lacZ and ParaBAD- ler’-‘lacZ translational
fusions was assayed as described in our previous papers (Bhatt et al., 2017, Muche et al., 2023), with slight changes. An
individual bacterial colony was inoculated into 5 mL of LB supplemented with ampicillin (100 µg/mL) and grown overnight at
37˚C/250 rpm. The cultures were diluted 100-fold in 5 mL of the same medium that was additionally supplemented with
arabinose (0.002-0.02%) and IPTG (1 mM). Arabinose induces transcription of the chimeric ‘lacZ genes, whereas IPTG
induces the transcription of dsrA from pDsrA. Cultures were grown at 37˚C/250 rpm to an optical density of ~1.0. β-
galactosidase assays were performed on 100 µL of the permeabilized cell extracts. β-galactosidase activity of the chromosomal
PLEE1-ler’-lacZ+ transcriptional fusion was assayed using similar experimental conditions as those used for the translational
fusions, with minor modifications. To assay β-galactosidase activity in the transformants harboring pBR-plac or pDsrA, the
overnight grown cultures were diluted 100-fold in LB medium supplemented with ampicillin and IPTG (1 mM). For the
transformants harboring pBAD24 or pRpoS, the overnight grown cultures were diluted 100-fold in LB medium supplemented
with ampicillin and arabinose (0-002%-0.02%).
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RNA isolation and qRT-PCR: Two individually isolated colonies of EPEC (pBR-plac) or EPEC (pDsrA) were each
inoculated into separate test tubes containing 5 mL of LB supplemented with ampicillin and grown for ~16-20 hours at
37˚C/250 rpm. The following day the cultures were diluted 100-fold in 10 mL of LB supplemented with ampicillin and IPTG
(1 mM) and grown to an optical density of ~1.0. RNA was isolated from 5 mL of the broth cultures by using the Trizol
reagent, in accordance with the manufacturer’s (ThermoFisher) instructions. Contaminating DNA was removed from 1 µg of
RNA by treating it with DNase I, as recommended (Ambion). The DNase treated RNA was concentrated by a second round of
RNA purification, with the exception that the sample was not retreated with lysozyme. Quantitative reverse transcription real
time PCR (qRT-RT PCR) was performed on 50 ng of RNA using the RotorGene SYBR Green RT-PCR kit (QIAGEN). The
cycle threshold method 2-∆∆Ct was used to compare the relative abundance of a transcript of interest in the dsrA overexpressor,
EPEC (pDsrA), with respect to the empty vector containing parental strain, EPEC (pBR-plac). Briefly, the cycle threshold (Ct)
of the target transcript was normalized to the cycle threshold of the housekeeping transcript rrsB to generate the ∆Ct values for
each sample. The ∆Ct for a specific transcript was averaged in the control strain EPEC (pBR-plac). Subsequently, the ∆∆Ct of
each individual sample was calculated by subtracting the averaged ∆Ct of the specific transcript in the control strain from the
∆Ct values of the same transcript in the individual sample. The relative transcript abundance was then calculated using the
formula 2-ΔΔCt. This variation ensures that the mean relative expression of a target transcript is as close to 1 (100%) in the
control samples. The primers used for qRT-PCR are listed in table 2. Each experiment was repeated on at least two separate
occasions using 2 biological replicates. Similar results were obtained in each experiment.

Preparation of cell lysates for Western Blotting: The strains EPEC (pBR-plac) and EPEC (pDsrA) were probed for Tir and
RpoS, whereas EPEC grlA-3X-FLAG (pBR-plac) and EPEC grlA-3X-FLAG (pDsrA) were probed for 3X-FLAG tagged
GrlA. Culture conditions for western blotting were identical to those described for RNA isolation and qRT-PCR above. The
primary antibodies used were anti-Tir (5000-fold dilution; MyBioSource; Cat # MBS7049999), anti-RpoS (5000-fold dilution;
Susan Gottesman, NIH), and anti-FLAG (5000-fold dilution; Sigma; Cat # A9469-1MG). The secondary antibody was
conjugated to Horseradish peroxidase and used at 5000-fold dilution (Sigma; Cat #A0545-1ML). Each experiment was
repeated on at least two separate occasions using 2 biological replicates. Similar results were obtained in each experiment.

Table 1: Biological strains & Plasmids

Strain Description Reference or Source

EPEC Wild type EPEC O127:H6 strain E2348/69 James Kaper

MG1655 Wild type E. coli K-12 Susan Gottesman

MC4100 E. coli K-12 MG1655 derivative Lab stock

LS4922 EPEC (pBR-plac), ApR (Bhatt et al., 2017)

LS4931 EPEC (pDsrA), ApR This study

LS1148 EPEC 2348/69 ɸ (grlA-3X-FLAG) (Bhatt et al., 2009)

LS5704 LS1148 (pBR-plac), ApR This study

LS5724 LS1148 (pDsrA), ApR This study

PM1205 =
LS4767 ParaBAD-cat-sacB-‘lacZ mini-lambda, CmR TetR SucS (Mandin & Gottesman,

2009)

LS4981 PM1205 ParaBAD-grlR’-‘lacZ, CmS TetS SucR (Bhatt et al., 2017)
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LS5096 LS4981 (pBR-plac), CmS TetS SucR ApR (Bhatt et al., 2017)

LS5063 LS4981 (pDsrA), CmS TetS SucR ApR This study

LS4978 PM1205 ParaBAD-ler’-‘lacZ, CmS TetS SucR (Muche et al., 2023)

LS5091 LS4978 (pBR-plac), CmS TetS SucR ApR (Muche et al., 2023)

LS5089 LS4978 (pDsrA), CmS TetS SucR ApR This study

JLM164 MC4100 ler’-lacZ+ (Mellies et al., 1999)

LS5698 MC4100 ler’-lacZ+ (pBR-plac), ApR (Muche et al., 2023)

LS5734 MC4100 ler’-lacZ+ (pDsrA), ApR This study

LS6021 MC4100 ler’-lacZ+ (pBAD24), ApR This study

LS6024 MC4100 ler’-lacZ+ (pRpoS), ApR This study

Plasmids

pBR-plac Parental vector for cloning, ApR (Guillier & Gottesman,
2006)

pDsrA
pBR-plac derivative expressing dsrA under an IPTG inducible promoter,
ApR

(Mandin & Gottesman,
2010)

pBAD24 Parental vector for cloning, ApR (Guzman et al., 1995)

pRpoS pBAD24 derivative expressing rpoSE. coli under an arabinose inducible
promoter

Nadim Majdalani

Table 2: Oligonucleotides

Name Sequence

SB2236 (5’ primer for ParaBAD-
grlR’-‘lacZ)

ACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATgcaatctggagaaaaaga
aaggtct

SB2248 (3’ primer for ParaBAD-
grlR’-‘lacZ)

TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACattgctaataaatataat
gctatagatgcc

SB2234 (5’ primer for ParaBAD-
ler’-‘lacZ)

ACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATgaaaacagagaataataa
cattttaaggtgg
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SB2247 (3’ primer for ParaBAD-
ler’-‘lacZ )

TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACG
ACctgaatgtatggacttgttgtatgt

5’ grlR (downstream primer qRT-
PCR) TTAGCAATGAAGACTCCTGTGG

3’ grlR (downstream primer qRT-
PCR) AGAGAGAACCCCCTGATACAC

5’ grlA (upstream primer for qRT-
PCR) AGGCGGTTCCGATAGAAAGT

3’ grlA (downstream primer qRT-
PCR) GCCTCAAGATCATTTCGTTCC

5' ler (upstream primer for qRT-PCR) GCAGTTCTACAGCAGGAAGCA

3' ler (downstream primer for qRT-
PCR) CGAGCGAGTCCATCATCAG

5' tir (upstream primer for qRT-PCR) GCAGAAGACGCTTCTCTGAATA

3' tir (downstream primer for qRT-
PCR) CCCAACTTCAGCATATGGATTA

5' espA (upstream primer for qRT-
PCR) GCTGCAATTCTCATGTTTGC

3' espA (downstream primer for qRT-
PCR) GGGCAGTGGTTGACTCCTTA

5' escJ (upstream primer for qRT-
PCR) CCAAAGAAATGGACAAAAGTGG

3' escJ (downstream primer for qRT-
PCR) GCTGGGTGGGAAAATAACCT

5' escN (upstream primer for qRT-
PCR) CGGTATTGGGCAGCGTATC

3' escN (downstream primer for qRT-
PCR) GCCGATAAGAGCAAGGACAA

5’ rrsB (upstream primer for qRT-
PCR) CTTACGACCAGGGCTACACAC

3’ rrsB (upstream primer for qRT-
PCR) CGGACTACGACGCACTTTATG
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