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Abstract
The extracellular matrix (ECM) is a rich collection of macromolecules that influences numerous cellular functions; however,
its roles at neuronal synapses are not fully understood. Using dendritic spines of Caenorhabditis elegans GABAergic neurons
as a model, we found that the ECM component Collagen XVIII/CLE-1 is localized in close proximity to dendritic spines and
is important for their normal development and maintenance. Specific expression of cle-1 in GABAergic neurons partially
rescued the reduction in spine number in cle-1(cg120) mutants. Together, our findings suggest that Collagen XVIII/CLE-1
regulates dendritic spines, in part through local CLE-1 deposition from GABAergic neurons.

Figure 1. Collagen XVIII/cle-1 affects dendritic spines:

(A) Maximum projection confocal image of C. elegans GABAergic DD1 neuron (inverted LUT grey scale) labeled by
mCherry. pGABA::mCherry refers to transgenic expression in GABA neurons using the flp-13 promoter. Neuronal cell body
(CB), dendritic shaft and dendritic spines of the DD1 neuron are shown. Dashed box highlights region enlarged in bottom
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panel, dendritic spines are marked by grey arrowheads. All images are from L4 animals and are oriented with anterior (A) to
the left, and dorsal (D) towards the top. Scale bar, 5 μm. (B) Maximum projection confocal image showing endogenous mNG-
tagged Collagen XVIII/CLE-1 expression (CLE-1::mNG, green) and DD GABAergic neurons labeled with pGABA::mCherry
(red). CLE-1::mNG labeling is in close proximity to DD1 dendritic spines (in dashed box), within the ventral nerve cord
(VNC). Additional CLE-1::mNG expression is also observed near the dorsal nerve cord (DNC), and surrounding the
pharyngeal bulb. Region within dashed box is enlarged in the right panel and shown as a single 0.3 μm confocal slice.
Dendritic shaft and spines of DD1 labeled in red (top right panel, pGABA::mCherry), endogenous mNG-tagged CLE-1
expression labeled in green (middle panel, CLE-1::mNG), and merged images (bottom) are shown, revealing close proximity
of CLE-1::mNG to DD1 dendritic spines. Scale bar, 5 μm. Asterisk indicates pharyngeal expression of co-injection marker.
CB, cell body. (C) Representative inverted maximum projection confocal images showing DD1 dendritic spines from
wildtype, cle-1(cg120), and rescue line #1. Rescue refers to specific expression wildtype cle-1 cDNA in GABAergic neurons
of cle-1(cg120) mutant animals (GABA::cle-1(+)). Scale bar, 5 μm. (D) Scatter plot showing quantification of spine number
in DD1 neurons within a 15 µm region in wild type, cle-1(cg120) mutants, and rescue strains. The number of DD1 dendritic
spines was significantly decreased in cle-1(cg120) mutants compared to wildtype. This mutant phenotype was partially and
significantly rescued in two of three lines that expressed wildtype cle-1 cDNA under a GABAergic promoter (GABA::cle-
1(+)) in a cle-1(cg120) background. Red horizontal line indicates mean value. ANOVA with Tukey's multiple comparisons
test. ***p<0.0001, ** p<0.001, *p<0.02.

Description
The extracellular matrix (ECM) is a non-cellular network of macromolecules that serve as a scaffold to support surrounding
cells and offer a rich network of biochemical and physiological signals. The ECM performs a wide range of functions
including structural support, cell adhesion, cell migration, cell growth, cell polarity and cell survival (Frantz et al., 2010;
Karamanos et al., 2021; Long and Huttner, 2019). Several studies have investigated the role of ECM receptors at synapses but
roles for specific ECM molecules in synapse development, positioning, and maintenance are not fully understood (Dityatev et
al., 2010; Kerrisk et al., 2014; Levy et al., 2014; Senkov et al., 2014; Yang et al., 2023).

To better understand how the ECM impacts neuronal synapses, we studied ECM interactions using recently characterized
dendritic spines in dorsal-type D-class GABAergic neurons of the nematode Caenorhabditis elegans as a model (Alexander et
al., 2023; Cuentas-Condori et al., 2019; He et al., 2015; Oliver et al., 2022; Philbrook et al., 2018). Dendritic spines in C.
elegans share many features with spines found on dendrites of mammalian neurons. These small actin-rich membrane
protrusions house neurotransmitter receptors and other signaling machinery, and are the sites at which a majority of
mammalian brain excitatory synapses are located (Hering and Sheng, 2001; Rochefort and Konnerth, 2012). Dendritic spines
play important roles in strengthening synaptic connections and signal transduction in mammals; however, the cellular
machinery involved in formation and maintenance of these protrusions are not well understood. The transparent epithelium
and well-characterized, largely invariant neuronal connectome of C. elegans enable in vivo studies of dendritic spines of the
same single neuron across many animals, providing a unique opportunity to better understand roles of the ECM in dendrite
biology.

We focused our studies on the ECM molecule Collagen XVIII/CLE-1 that belongs to a specialized subset of ECM, the
basement membrane, in part because prior single cell (sc)RNAseq studies indicated strong expression of cle-1 in GABAergic
motor neurons (Taylor et al., 2021). Previous work suggests Collagen XVIII might be important at synapses between climbing
fiber axons and Purkinje cell dendrites in the mouse cerebellum (Su et al., 2012). In addition, mutations in Collagen XVIII/cle-
1 disrupt GABAergic presynaptic organization (Ackley et al., 2003) and lead to ectopic presynaptic boutons in C. elegans (Qin
et al., 2014). Collectively, these studies support roles for Collagen XVIII/CLE-1 in directing presynaptic organization, but
contributions of CLE-1 to the organization of postsynaptic structures, such as dendritic spines, remain less well understood.

To investigate the potential role of Collagen XVIII/CLE-1 at dendritic spines of GABAergic neurons, we used cell-specific
expression of the red fluorescent protein mCherry to visualize GABAergic dendrites, as done previously (He et al., 2015;
Oliver et al., 2022; Philbrook et al., 2018). We imaged and analyzed dendritic spines of the DD1 GABAergic neuron (Figure
1A) due to its spatial isolation and largely invariant, easily identifiable location (immediately posterior and inferior to the
second pharyngeal bulb). Similar to earlier work (He et al., 2015; Oliver et al., 2022; Philbrook et al., 2018), we observed an
average of 6.9 ± 0.3 (SEM) spines per 15 μm of DD1 GABAergic dendrite in wild-type larval stage 4 (L4) animals, the final
larval stage before adulthood.

We examined the localization of Collagen XVIII/CLE-1 relative to DD1 dendrites and associated spines using a genome
edited strain where endogenous Collagen XVIII/CLE-1 is tagged with mNeonGreen (mNG) (Keeley et al., 2020). Consistent
with previous reports (Keeley et al., 2020), we noted strong CLE-1::mNG expression around the terminal bulb of the pharynx.
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We also observed significant CLE-1::mNG fluorescence near the dorsal and ventral nerve cords (Figure 1B), similar to
previous findings using anti-CLE-1 antibodies (Ackley et al., 2001; Ackley et al., 2003). Intriguingly, we also noted CLE-
1::mNG fluorescent signal in close proximity to dendritic spines of the DD1 GABAergic motor neuron. In particular, we found
that fluorescent signals associated with CLE-1 and spines were colocalized within a single 0.3 μm optical slice (Figure 1B),
providing support for close proximity of CLE-1 to dendritic spines.

To investigate a potential role for CLE-1 in spine outgrowth or maintenance, we quantified the number of dendritic spines in
L4 stage wild type and cle-1(cg120) mutant animals. cle-1(cg120) animals carry a deletion mutation that removes nearly the
entire C-terminal noncollagenous NC1 domain (Ackley et al., 2001). Truncated Collagen XVIII/CLE-1 protein is detectable in
cg120 animals by immunohistochemistry albeit at lower levels than wildtype (Ackley et al., 2001). Cell motility, axon
patterning, and neuromuscular synapse organization are variably affected by this mutation (Ackley et al., 2001; Ackley et al.,
2003; Kuo et al., 2001; Qin et al., 2014). We found the number of dendritic spines on GABAergic DD1 neurons was strikingly
reduced (by nearly 50%) in cle-1(cg120) mutant animals compared to wildtype (Figure 1C,D). Specifically, the average
number of spines in a 15 μm region of interest decreased from 6.9 ± 0.3 (SEM) in wild type to 3.4 ± 0.2 (SEM) in cle-
1(cg120) animals, suggesting Collagen XVIII/CLE-1 plays an important role in dendritic spine formation or maintenance.
Knowing the cg120 allele may cause abnormalities in cell migration or axon extension (Ackley et al., 2001), we restricted our
spine quantification to DD1 neurons with normally positioned cell bodies, located ventral and slightly posterior to the terminal
bulb of the pharynx, and with properly extended main dendrites that appeared qualitatively similar to that of wildtype. Thus,
effects on cell body positioning or dendrite outgrowth are unlikely to account for the reduction in dendritic spines we
observed.

Given the previous evidence for strong expression of cle-1 in GABAergic neurons (Taylor et al., 2021), we asked whether
specific expression of wild-type cle-1 in GABAergic neurons of cle-1 mutants was sufficient to reverse the decrease in spine
number we observed. We noted partial, but significant, rescue in two of three cle-1 mutant lines that carried the cle-1 rescuing
transgene, demonstrating cell autonomous cle-1 expression in GABAergic neurons is sufficient to partially normalize the
outgrowth/maintenance of dendritic spines (Figure 1C, D). This finding is somewhat surprising since CLE-1 is expressed by a
variety of cell types that likely contribute towards its distribution in the wildtype (Ackley et al., 2003; Graham et al., 1997;
Taylor et al., 2021). Our studies demonstrate that local deposition of CLE-1 from GABAergic neurons is at least partially
sufficient to rescue postsynaptic spine defects.

In summary, our data show that the ECM molecule Collagen XVIII/CLE-1 is expressed in close proximity to dendritic spines
of GABAergic motor neurons. Our data also reveal that mutation of cle-1 leads to a striking reduction in the number of
dendritic spines on DD1 GABAergic neurons. Expression of wild-type cle-1 solely in GABAergic motor neurons partially
rescues this mutant phenotype, suggesting that deposition of CLE-1 by GABAergic neurons may be important for spine
development or maturation. Prior work showed that the synaptic adhesion protein Neurexin/NRX-1 is required for the
maintenance of nascent spines during development (Oliver et al., 2022; Philbrook et al., 2018). Our findings therefore also
raise the interesting possibility that CLE-1 and NRX-1 may act in the same pathway to regulate spine organization.

Methods
Strains

All strains are N2 Bristol strain derivatives (wildtype). Animals were maintained at room temperature (20-240C) on nematode
growth media plates (NGM) seeded with E. coli strain OP50. Some strains were provided by the Caenorhabditis Genetics
Center (CGC), which is funded by the NIH Office of Research Infrastructure Programs (P40 ODO1O44). Transgenic strains
were obtained by microinjection to achieve transformation (Mello et al., 1991) and identified by using co-injection markers.
Integrated lines were produced with X-ray irradiation and outcrossed to wild type/N2 Bristol eight times. Only L4
hermaphrodites were used in this study.

Molecular Biology

Plasmids were constructed using the two-slot Gateway Cloning system (Invitrogen) and confirmed by restriction digest and
sequencing.

cle-1 rescue constructs

cle-1 cDNA was synthesized from total RNA and amplified by RT-PCR using Superscript III Platinum Taq, assembled into
pDest-16 (after digesting with NgoMIV + KpnI HF) using NEB HiFi Assembly to create pDest-377. pDest-377 was
recombined by Gateway LR recombination (Invitrogen) with pENTR-3'-unc-47 (unc-47 promoter) to generate pJR9 (Punc-
47::cle-1 cDNA) .
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Confocal microscopy and analysis

Animals were immobilized in 0.3 M sodium azide on a 2% agarose pad. Images were obtained using a Yokogawa CSU-10
spinning disk confocal system on an upright Olympus BX51WI microscope with a Hammamatsu C9100-13 EMCCD camera
and 63X oil immersion objective. Cobolt Calypso 491 nm and Jive 561 nm lasers were used for imaging. Image acquisition
was using the software Volocity 4.3 (Perkin-Elmer). All images were obtained by imaging DD1 neurons in L4 hermaphrodites
near the pharynx using identical imaging and laser settings for each marker. Z stack volumes were acquired using an objective-
coupled Piezo (PI) at 0.3 µm/ z step. Image analysis was conducted using Fiji software (Version 2.14.0/1.54f) as described
previously (He et al., 2015; Oliver et al., 2022; Philbrook et al., 2018). Briefly, spines that were at least 0.2 μm in length were
counted within a 15 μm ROI anterior to the DD1 cell soma. Spine length was determined by measuring from the base to the tip
of each protrusion.

Reagents
C. elegans strains used in this study:

Strain name Genotype Description Plasmid Source

IZ2680 ufIs170
DD-specific
transcriptional reporter
(red)

Pflp-13::mCherry
(pAP31 @ 50ng/ul), co
injection marker Punc-
122::GFP (pPD97.98
@ 50ng/ul)

Francis lab

NK2322 cle-1(qy22)

CRISPR/Cas-9 mNG
knock-in into C
terminus of cle-1
(green) (Keeley et al,
2020)

CGC

IZ4342 cle-1(qy22); ufIs170

CRISPR/Cas-9 mNG
knock-in into C
terminus of cle-1
(green) (Keeley et al.,
2020), DD-specific
transcriptional reporter
(red)

Pflp-13::mCherry
(pAP31 @ 50ng/ul), co
injection marker Punc-
122::GFP (pPD97.98 @
50ng/ul)

Francis lab

CH120 cle-1(cg120)
cle-1 mutant with
deletion in NC1
domain

CGC

IZ4345 cle-1(cg120);ufIs170

cle-1 mutant with
deletion in NC1
domain, DD-specific
transcriptional reporter
(red)

Pflp-13::mCherry
(pAP31 @ 50ng/ul), co
injection marker Punc-
122::GFP (pPD97.98 @
50ng/ul)

Francis lab
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IZ4491 cle-1(cg120); ufIs170;
ufEx1905

cle-1 mutant with
deletion in NC1
domain, DD-specific
transcriptional reporter
(red), GABA-specific
expression of wildtype
cle-1 cDNA, line 1

ufEx1905= Punc-
47::cle-1 cDNA [pJR9
@25ng/µL], co
injection marker Plgc-
11::mCherry [pBB107
@ 50 ng/µL]

Francis lab

IZ4493 cle-1(cg120); ufIs170;
ufEx1906

cle-1 mutant with
deletion in NC1
domain, DD-specific
transcriptional reporter
(red), GABA-specific
expression of wildtype
cle-1 cDNA, line 2

ufEx1906= Punc-
47::cle-1 cDNA [pJR9
@25ng/µL], co
injection marker Plgc-
11::mCherry [pBB107
@ 50 ng/µL]

Francis lab

IZ4495 cle-1(cg120); ufIs170;
ufEx1908

cle-1 mutant with
deletion in NC1
domain, DD-specific
transcriptional reporter
(red), GABA-specific
expression of wildtype
cle-1 cDNA, line 3

ufEx1908= Punc-
47::cle-1 cDNA [pJR9
@25ng/µL], co
injection marker Plgc-
11::mCherry [pBB107
@ 50 ng/µL]

Francis lab

Primers used to detect cle-1(cg120)

Forward primer OMF3285 (GT Fwd primer spans intron 20 and exon 20 in cle-1 Transcript): ACGATTCTAGATGgtcagttgg

Reverse primer OMF3286 (GT Rev primer in intron 20 on cle-1 Transcript D): ccgtattccttctaccaccata

Generated 613 bp product from animals carrying allele for wildtype cle-1

Forward primer OMF3284 (GT Fwd primer in exon 17 based on cle-1 Transcript D)

AGGAGACCTCCCAGAATACAAT

Reverse primer OMF3286 (GT Rev primer in intron 20 on cle-1 Transcript D): ccgtattccttctaccaccata

Generated 432 bp product in animals carrying the cg120 mutant allele.
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