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Abstract
Aberrant endoplasmic reticulum (ER) and inner nuclear membrane (INM) proteins are destroyed through ER-associated
degradation (ERAD) and INM-associated degradation (INMAD). We previously showed the Hrd1, Doa10, and Asi ERAD and
INMAD ubiquitin ligases (E3s) in Saccharomyces cerevisiae confer resistance to hygromycin B, which distorts the ribosome
decoding center. Here, we assessed the requirement of Ubc6 and Ubc7, the primary ERAD and INMAD ubiquitin-conjugating
enzymes (E2s) for hygromycin B resistance. Loss of either E2 sensitized cells to hygromycin B, with UBC7 deletion having a
greater impact, consistent with characterized roles for Ubc6 and Ubc7 in ER and INM protein quality control.
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Figure 1. UBC6 and UBC7 confer resistance to hygromycin B:

(A) Endoplasmic Reticulum (ER)-Associated Degradation and Inner Nuclear Membrane (INM)-Associated Degradation
pathways. In conjunction with the E2 Ubc7, the E3 Hrd1 promotes degradation of aberrant ER luminal and transmembrane
proteins as well as proteins that clog ER translocons. The E3 Doa10 functions with two E2s, Ubc6 and Ubc7, to mediate
degradation of aberrant transmembrane proteins at the ER or INM in addition to soluble cytosolic or nucleoplasmic proteins.
The trimeric Asi E3 complex (Asi1, Asi2, and Asi3) works with Ubc6 and Ubc7 to target aberrant transmembrane INM and
soluble nucleoplasmic proteins. Ubc7 is anchored at the ER membrane through interaction with Cue1. Ub, ubiquitin. (B) and
(C) Sixfold serial dilutions of yeast of the indicated genotype were spotted on medium lacking (No Drug) or containing
increasing concentrations of hygromycin B. Plates were incubated at 30°C and imaged after 1-2 days. Experiments were
performed three or more times.

Description
Degradation of misfolded, excess, and otherwise aberrant proteins is critical for cellular homeostasis. The ability to recognize
and destroy faulty proteins declines with age, and disruptions to enzymes contributing to protein quality control (PQC)
contribute to several diseases (Badawi et al., 2023; Guerriero & Brodsky, 2012). Eukaryotic cells possess compartment-
specific PQC mechanisms, including those dedicated to the turnover of aberrant proteins at the physically continuous
endoplasmic reticulum (ER) membrane and inner nuclear membrane (INM) (Mehrtash & Hochstrasser, 2019). ER-associated
degradation (ERAD) promotes turnover of aberrant ER luminal, transmembrane, and translocon-clogging proteins as well as
cytosolic polypeptides that contact the ER surface. INM-associated degradation (INMAD) mediates proteolysis of faulty INM
transmembrane and INM-abutting soluble nucleoplasmic proteins. ERAD and INMAD both employ ubiquitin-conjugating
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enzymes (E2s) and ubiquitin ligases (E3s) to polyubiquitylate proteins (Figure 1A), destining them for destruction by cytosolic
or nucleoplasmic proteasomes.

The highly conserved transmembrane Hrd1 and Doa10 E3s mediate ERAD in Saccharomyces cerevisiae, targeting distinct
classes of aberrant proteins for degradation based on the location and nature of the degradation signals (degrons) (Carvalho et
al., 2006; Huyer et al., 2004; Metzger et al., 2008; Rubenstein et al., 2012; Runnebohm, Richards, et al., 2020; Sato et al.,
2009). Doa10 also functions in INMAD alongside the heterotrimeric Asi E3 (composed of Asi1, Asi2, and Asi3) (Deng &
Hochstrasser, 2006; Foresti et al., 2014; Khmelinskii et al., 2014). Loss of either Asi1 or Asi3 abolishes Asi PQC function
(Foresti et al., 2014; Woodruff et al., 2021). Hrd1, Doa10, and the Asi complex have partially overlapping E2 dependencies.
Hrd1 functions primarily with the soluble E2 Ubc7 (human homolog, UBE2G2), which is anchored at the membrane by the
transmembrane protein Cue1 (Bays et al., 2001; Lips et al., 2020; Plemper et al., 1999). By contrast, Doa10 and Asi use two
E2s, Ubc7 and the transmembrane Ubc6 (human homolog, UBE2J2) (Foresti et al., 2014; Khmelinskii et al., 2014; Swanson et
al., 2001). Ubc6 and Ubc7 participate in a sequential ubiquitylation mechanism, with Ubc6 “priming” substrates with an initial
ubiquitin molecule and Ubc7 elongating polyubiquitin chains (Lips et al., 2020; Weber et al., 2016). It is likely that additional
E2s contribute to a lesser extent to ERAD and INMAD. For example, in some circumstances, the E2 Ubc1 partially
compensates for impaired Ubc7 function in promoting Hrd1 substrate ubiquitylation (Bays et al., 2001).

The aminoglycoside hygromycin B binds to and distorts the ribosome A site, thereby likely increasing the frequency of
mistranslation and generation of PQC substrates (Brodersen et al., 2000; Ganoza & Kiel, 2001). Mutation of genes encoding
several proteins with documented or predicted PQC function causes hygromycin B hypersensitivity (Bengtson & Joazeiro,
2010; Chuang & Madura, 2005; Daraghmi et al., 2023; Flagg et al., 2023; Jaeger et al., 2018; Turk et al., 2023; Verma et al.,
2013). Indeed, we have previously shown that loss of several ubiquitin ligases, including Hrd1, Doa10, Asi1, or Asi3,
sensitizes cells to hygromycin B (Crowder et al., 2015; Doss et al., 2022; Niekamp et al., 2019; Runnebohm, Evans, et al.,
2020; Woodruff et al., 2021). A role for Ubc6 and Ubc7 in combatting hygromycin B-induced proteotoxic stress has not been
demonstrated. Given their functions as the major characterized E2s in ERAD and INMAD, we predicted loss of either enzyme
would reduce fitness in the presence of this drug.

To assess the roles of Ubc6 and Ubc7 in combatting proteotoxic stress caused by hygromycin B, we cultured serial dilutions of
wild type yeast, yeast lacking UBC6 and UBC7 individually or in concert, as well as a yeast strain rendered broadly defective
for ERAD and INMAD by simultaneous deletion of HRD1, DOA10, and ASI1 (Figure 1B). All strains grew similarly in the
absence of hygromycin B. Loss of either UBC6 or UBC7 sensitized yeast to hygromycin B, with UBC7 deletion having a
stronger impact. Combined deletion of both UBC6 and UBC7 caused a greater growth defect than individual absence of either
E2-encoding gene. Finally, hrd1Δ doa10Δ asi1Δ yeast exhibited a more profound growth defect than any E2 mutant.

To validate these results, we assessed hygromycin B sensitivity of ubc6Δ and ubc7Δ yeast strains in a distinct genetic
background, as well as three double mutants lacking catalytic components of the ERAD or INMAD E3s (Figure 1C). As
before, loss of either E2 sensitized yeast to hygromycin B, with cells lacking Ubc7 faring more poorly than those without
Ubc6. Loss of any two ERAD or INMAD E3s approximately phenocopied ubc7Δ yeast.

A greater role for Ubc7 than Ubc6 in combatting proteotoxicity likely reflects broader Ubc7 participation in ERAD and
INMAD. Loss of Ubc6 is expected to compromise Doa10 and Asi function, while UBC7 deletion is predicted to abolish all
three major branches of ERAD and INMAD. The observation that ubc6Δ ubc7Δ double mutant yeast exhibit a stronger growth
defect than either ubc6Δ or ubc7Δ single mutant suggests independent functions for both Ubc6 and Ubc7. Identification of
Ubc6-dependent, Ubc7-independent PQC substrates would support this model. Further, an enhanced growth defect of hrd1Δ
doa10Δ asi1Δ compared to ubc6Δ ubc7Δ yeast is in agreement with other reports indicating additional E2s (such as Ubc1)
may function with ERAD and INMAD E3s, when the primary E2s are unavailable.

Our data are consistent with a previous study demonstrating overexpression of genes encoding either E2 enhances resistence to
multiple stresses, including heat stress, oxidative stress, and presence of the toxic amino acid analog canavanine (Hiraishi et
al., 2006). Conversely, previous work showed that ubc7Δ and hrd1Δ doa10Δ yeast exhibited similar hypersensitivity to
cadmium (Swanson et al., 2001). Large-scale analyses indicated loss of UBC7 reduces tolerance to multiple transition metals,
which oxidatively damage a range of biological macromolecules, including proteins (Bleackley et al., 2011; Ruotolo et al.,
2008; Zhao et al., 2020), and genotoxic agents (Alamgir et al., 2010; Brown et al., 2006; Gaytan et al., 2013; Kapitzky et al.,
2010). We note hygromycin B hypersensitivity was not observed for ubc6Δ or ubc7Δ yeast in a previous report (Chuang &
Madura, 2005). This may be due to differences in effective drug concentrations in culture medium. In alignment with our
results, we have also recently shown that loss of Doa10, Hrd1, and Ubc7 homologs sensitizes the pathogenic fungi Candida
albicans to hygromycin B (Doss et al., 2023). Overall, our work supports a critical and conserved function for endoplasmic
reticulum and inner nuclear membrane ubiquitin-conjugating enzymes in protein quality control.
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Methods
Growth assays

Yeast growth was analyzed as previously described (Watts et al., 2015). Briefly, sixfold dilutions of each yeast strain were
spotted onto yeast extract-peptone-dextrose medium (Guthrie & Fink, 2004) lacking or containing hygromycin B (Gibco) at
the indicated concentrations and incubated at 30°C for the indicated amount of time.

ASI3 gene replacement

To generate yeast strains VJY409 and VJY410, ASI3 was replaced by natMX4 through homologous recombination. A 1464-bp
nat4MX4 cassette with termini possessing sequences flanking the ASI3 gene was PCR-amplified from pAG25 (Goldstein &
McCusker, 1999) using primers VJR274 (5’ AGGAACAGTCATTACGTAGGGATTTTCAAAAGTTTGACTG
CACATACGATTTAGGTGACAC) and VJR275 (5’ TCCTATGATGTCTTAAATACGTATACCTAATAAAATAATT
AATACGACTCACTATAGGGAG 3’). The natMX4 cassette was introduced into VJY22 (hrd1Δ::kanMX4) yeast and VJY102
(doa10Δ::kanMX4) by lithium acetate transformation (Guthrie & Fink, 2004). Successful integration in nourseothricin-
resistant clones were verified by PCR at the 5’ and 3’ recombination junctions, and genotypes at the DOA10, HRD1, and ASI3
loci were PCR validated for both strains.

Reagents
Yeast strains used in this study.

Name Genotype Figure or
purpose Reference

VJY6 (alias
MHY500) MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 1B (Chen et al., 1993)

VJY22 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 hrd1Δ::kanMX4
Used to
generate
VJY409

(Tong et al., 2001)

VJY44 (alias
MHY496)

MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 ubc6-
Δ1::HIS3 1B (Sommer & Jentsch,

1993)

VJY50 (alias
MHY551)

MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2
ubc7Δ::LEU2 1B (Chen et al., 1993)

VJY102 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 doa10Δ::kanMX4
Used to
generate
VJY410

(Tong et al., 2001)

VJY305 (alias
SKY252)

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 doa10Δ::kanMX4
hrd1Δ::kanMX4 1C (Habeck et al.,

2015)

VJY409 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 hrd1Δ::kanMX4
asi3Δ::natMX4 1C This study

VJY410 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 doa10Δ::kanMX4
asi3Δ::natMX4 1C This study

VJY476 (alias
BY4741) MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 1C (Tong et al., 2001)
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VJY723 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ubc6Δ::kanMX4 1C (Hickey et al., 2021)

VJY1075 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ubc7Δ::kanMX4 1C (Tong et al., 2001)

VJY1096 (alias
MHY553)

MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2
ubc6Δ::HIS3 ubc7Δ::LEU2 1B (Chen et al., 1993)

VJY1098
(MHY11132,
ABM297)

MATa his3-Δ200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2
doa10Δ::HIS3 hrd1Δ::LEU2 asi1Δ::kanMX6 1B (Mehrtash &

Hochstrasser, 2023)
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