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Abstract
The budding yeast Saccharomyces cerevisiae is a powerful model organism, partly because of the ease of genome alterations
due to the combination of a fast generation time and many molecular genetic tools. Recent advances in CRISPR-based systems
allow for the easier creation of alleles with internally inserted sequences within the coding regions of genes, such as the
internal insertion of sequences that code for epitopes or fluorescent proteins. Here we briefly summarize some exisiting
nomenclature standards and suggest nomenclature guidelines for internal insertion alleles which are informative, consistent,
and computable.
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Figure 1. BIM1-S334_N335insENVY contains an internally inserted ENVY sequence between the codons for amino
acids S334 and N335:

(A) Methods for creating an insertion using CRISPR-Cas9 in budding yeast. i) Guide RNA (gRNA) sequences are inserted
into pUB1306, replacing the GFP between the BsmBI sites. Key elements drawn: Cas9 (blue) under control of the PGK1
promoter (PPGK1), genes for selection (URA3 and KanR; yellow), and gRNA (pink). ii) CRISPR process to insert DNA
sequence within the genome. The repair template along with the plasmid encoding the guide sequence and Cas9 are co-
transformed into yeast. After the Cas9 cut in the genomic DNA, the yeast will repair the double strand break, leading to
insertion of new sequence within the gene. Counterselection against the URA3 marker using 5-FOA leads to loss of the
plasmid encoding Cas9 and the guide. (B) Depiction of the proteins encoded by the genes. BIM1 and BIM1-
S334_N335insENVY encode functional gene products while bim1-myc does not complement. (C) BIM1-S334_N335insENVY
complementation. Eight tetrads dissected from BIM1-S334_N335insENVY (LH1158) and bim1-myc (LH1161). Each numbered
column represents the four spores from the same parent (and thus, each column represents a different tetrad that has been
dissected) while each row (labeled A, B, C, and D) indicates where the spores were placed to examine germination and the
ability to form a colony.

Description
Introduction

The budding yeast Saccharomyces cerevisiae is a prominent model for investigating basic eukaryotic cell biology. One
beneficial characteristic of studying S. cerevisiae is the powerful molecular genetic tools available to modify the genome
(Botstein and Fink 2011). The propensity of S. cerevisiae to undergo homologous recombination has allowed for easy
insertions of sequences into the genome (Orr-Weaer et al. 1981; Orr-Weaver et al. 1983; Vanderwaeren et al. 2022). There are
many tools for PCR-mediated insertion of sequences at the 5’ and 3’ ends of genes (i.e., Schneider et al. 1995; Wach et al.
1997; Bahler et al. 1998; Longtine et al. 1998; Knop et al. 1999; Janke et al. 2004; Sheff and Thorn 2004; Lee et al. 2013)
which allow for the manipulation of endogenous loci. The insertions of promoter sequences, epitope sequences, or fluorescent
protein sequences at the 5’ and 3’ ends of genes are readily achievable using minimal (35-50 base pairs) homology, which are
added by PCR to the sequence to be inserted.

Insertions of epitopes or fluorescent proteins at the N- or C-termini of proteins can sometimes disrupt protein function. In
these cases, sometimes the insertion of the epitope or fluorescent protein internally within the protein can create a functional
protein (for example, Woods et al. 2015; Wu et al. 2015; Lang et al. 2015; Anand et al. 2017; Kornakov et al. 2023). In the
past, insertion alleles have been notated using different methods, some which did not clearly indicate the position of the
insertion. The creation of internal insertion alleles can now be more easily done due to the adaptation of CRISPR technologies
in S. cerevisiae (DiCarlo et al. 2013; Laughery et al. 2015; Anand et al. 2017; Levi et al. 2020), and multiple insertions at
different sites for a single gene can also be made. Some of these insertion alleles may be functional while others may not.
Thus, there is a need to update existing nomenclature guidelines for internal epitope/fluorescent protein insertion alleles that
are informative while maintaining consistency, computability, and clarity.

The Saccharomyces Genome Databases (SGD) has updated nomenclature guidance with advancements in knowledge and
techniques (Cherry et al. 1998; Engel et al. 2022; Wong et al. 2023). Recently, other model systems have also reviewed and
updated nomenclature standards within their field to increase recognition of alleles for data mining and machine learning
(Lera-Ramirez et al. 2023). Here, we briefly review some of the relevant existing nomenclature guidelines in S. cerevisiae and
suggest a methodology for naming alleles that insert epitopes/fluorescent protein coding sequences within gene coding
regions.

Results and Discussion

Existing gene nomenclature in S. cerevisiae

The nomenclature guidelines for S. cerevisiae were summarized shortly before the publication of the yeast genome sequence
in 1996 (Cherry 1995), and the majority of these rules are still utilized today. Gene names are italicized and comprise three
letters followed by a number (i.e., XYZ1). These symbols are all uppercase if the allele is dominant and lowercase if the allele
is recessive; wild type alleles are typically uppercase. When genomic alterations are made, alleles are annotated by the
addition of a symbol to indicate the nature of the alteration: disruptions are annotated with a double colon (::), deletions can be
indicated with a lower case delta (∆), epitopes or fluorescent proteins which are inserted at the endogenous locus are denoted
with a dash (-) and the addition of auxotrophic or antibiotic resistance markers linked to the allele are indicated with a single
colon (:). Examples of all of these are provided in Table 1 using the hypothetical XYZ1 gene as an example.
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Table 1. Nomenclature examples (based on Cherry 1995)

Gene Description of use

XYZ1 Wild type or dominant genes

xyz1 Mutant/recessive genes that may produce protein

xyz1∆ Complete open reading frame deletion

xyz1::URA3 Disruption, replacing open reading frame with S. cerevisiae
URA3

xyz1::URA3K.l. Disruption, replacing open reading frame with with K. lactis
URA3

XYZ1-GFP Complementing extreme C-terminal addition of GFP

XYZ1-GFP:TRP1 Complementing extreme C-terminal addition of GFP that
includes a 3’ selectable marker (TRP1)

xyz1-GFP Noncomplementing extreme C-terminal addition of GFP

GFP-XYZ1 Complementing extreme N-terminal addition of GFP

GFP-xyz1 Noncomplementing extreme N- terminal addition of GFP

Naming insertion alleles with wild type functions

There are currently no guidelines for naming S. cerevisiae alleles created by an internal epitope or fluorescent protein
insertion, resulting in alleles being named using multiple methods. For example, insertion alleles have been denoted using a
superscript SW (representing sandwich) after the fluorescent protein (Bendezu et al. 2015; Wu et al. 2015; Woods et al. 2015),
by using a caret (^) between the gene name and the epitope (Lang et al. 2015), or by using a superscript WT (representing wild
type, as for that particular insertion allele did complement while a C-terminal insertion did not) (Kornakov et al. 2023).

Although addition of the Green Fluorescent Protein (GFP) gene at the 3’ end of BIM1 created an allele that did not
complement, insertion of GFP in between the codons encoding Serine (S) 334 and Asparagine (N) 335 created a functional
BIM1 allele. This insertion allele can support cell viability in a Spindle Assembly Checkpoint deficient background and
complement BIM1 function, as assessed by temperature, hydroxyurea, and benomyl hypersensitivities (Kornakov et al. 2023).

We recreated this BIM1 insertion allele in the SK1 (Kane and Roth 1974) strain background using a CRISPR-based strategy
(Anand et al. 2017; Sawyer et. al 2018; Schlissel and Rine 2019; Figure 1A), modifying the genome to insert sequences
encoding for the GFP variant, Envy (Slubowski et al. 2015) in between the codons for S334 and N335 of Bim1 (Figure 1B).
This insertion alelle in the SK1 background sporulates like wild type and leads to 100% spore germination, unlike the bim1-
myc allele (Seitz et al. 2023), which results in a variable spore germination and cell growth phenotypes (Figure 1C).

We propose to name this insertion allele BIM1-S334_N335insENVY. We chose this name to maintain computability, while
providing valuable information regarding the allele. The hyphen between the gene name (BIM1) and the portion denoting
insertion site indicates that we have appended a fluorescent protein. All capital letters are used in the gene name, as this
particular insertion allele complements function and behaves like the wild type allele. The site of insertion is denoted using
both the amino acid number and the single letter code for the amino acid; using the amino acid code indicates that the number
refers to protein and not genome coordinates. Specifying the amino acid name helps to maintain stable and unambiguous
identification of the insertion site. To denote this an insertion allele, we use “ins”; carets and superscripts, which were
previously used, can be problematic in databases.
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This nomenclature scheme considers the naming conventions set up by the HGVS Nomenclature for naming human genome
variants (den Dunnen et al. 2016; see https://hgvs-nomenclature.org/) with some minor modifications. Instead of using genome
coordinates, we use amino acid coordinates. First, amino acid coordinates are more familiar to most yeast biologists who are
studying the functions of genes and gene products. Second, because there are several commonly used strain backgrounds used
to study S. cerevisiae, these strain backgrounds would have different genomic coordinates but share more similarity at the
amino acid level. Finally, we chose to use the single letter amino acid code instead of the three letter code for brevity.

Other related scenarios for internal epitope insertions

Sometimes, insertion of an epitope or fluorescent protein can lead to loss of gene function. If this were the case for gene XYZ1
that is internally modified between amino acid residues proline (P) 100 and tyrosine (Y) 101, we suggest to name this type of
allele xyz1-P100_Y101insGFP . In this case, the lowercase gene name denoting this is a recessive allele of gene XYZ1 that has
GFP coding sequences inserted between amino acids P100 and Y101.

Sometimes an epitope may replace a region of the gene, instead of a simple insertion. For example, if GFP replaced a protein
domain found between amino acids Leucine (L) 350 and Phenylalanine (F) 450 in protein Xyz1, the allele could be called
xyz1-L350_F450insGFP if this allele had a recessive phenotype and XYZ1-L350_F450insGFP if this allele were fully
functional. These addition to the existing nomenclature guidelines are in Table 2.

Table 2. Nomenclature for insertion alleles

Gene Description of use

BIM1 Wild type or dominant genes

BIM1-S334_N335insENVY Complementing internal insertion of sequences encoding the
GFP variant Envy

XYZ1 Wild type hypothetical gene

XYZ1-P100_Y101insGFP Complementing internal insertion of sequences encoding GFP

xyz1-P100_Y101insGFP Noncomplementing internal insertion of sequences encoding
GFP

XYZ1-L350_F450insGFP Complementing allele that replaces part of a gene with
sequences encoding GFP

xyz1-L350_F450insGFP Noncomplementing allele that replaces part of a gene with
sequences encoding GFP

The advancement of technologies for genetic manipulations can require an update to nomenclature guidelines. Ideally, the use
of proper nomenclature will provide important information both to the reader and for the purposes of text mining and
computability. The nomenclature guidelines we suggest allows for the ability to search for insertion alleles (due to the use of
“ins”) and also provides an understanding of where the insertion is and whether it is a complementing allele or one that is loss
of function/hypomorphic.

Methods
Materials and Methods

All strains used in this study are derivatives of the SK1 background often used for studying the sporulation process (Kane and
Roth 1974). Standard genetic methods were used to create and propagate strains (Rose and Fink 1990). Complete genotypes,
plasmids, and primers can be found in Tables 3-5.

Construction of the bim1-myc allele was previously described (Seitz et al. 2023). The non-complementing bim1-myc
homozygous strain (LH1161) was created by taking MATa bim1-myc, backcrossing it to wild type MATα (LH176) and
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dissected to obtain a MATa bim1-myc and MATα bim1-myc strain (LH1159 and LH1160), and mating these two strains.

To create pXM27, guide RNA (gRNA) sequences were inserted into pUB1306 to replace the GFP cassette. OLH2908 and
OLH2909, which contain 20 nucleotides of BIM1 genomic sequence preceding an NGG as well as BsmBI-hybridizing
sequences sites, were hybridized to create a duplex and cloned into pUB1306 using Golden Gate Assembly (Figure 1A;
Sawyer et al. 2019; Schlissel and Rine 2019). pXM27 was sequenced (Primordium) to confirm construction.

The repair template for CRISPR was created by first PCR amplifying the GFP variant, ENVY, coding sequence from pFA6a-
Link-ENVY-SpHIS5 (Slubowski et al. 2014) and adding sequences coding for the linkers GA5 and GGGS2 on 5’ and 3’ ends
respectively, using OLH2904 and OLH2905 (Table 5; linker sequences indicated in lowercase while sequences used for PCR
annealing in uppercase). This product was then purified (Monarch, New England Biolabs) and used as the template for PCR,
to add 40 base pairs of BIM1 homology to either side of the insertion point using OLH2906 and OLH2907 (Table 5; BIM1
homology indicated in lowercase while sequences used for PCR annealing in uppercase); this product was co-transformed into
a MATa wild type yeast strain (LH175) with pXM27 containing the gRNA sequences and plated on selective SD-URA plates.

To screen for appropriate insertion into the BIM1 locus, colonies were first screened for ENVY expression. Fluorescent yeast
were confirmed for proper insertion by sequencing: BIM1 was amplified using OLH2599 and OLH2600 and Sanger
sequenced (Quintara) using OLH2601 and OLH2603. These two sequencing primers provide information across the insertion
site in both directions.

The strain containing the insertion was first streaked on 5-Fluroorotic Acid (5-FOA) plates to lose pXM27 and then
backcrossed to MATa bim1-myc:HIS5S.p. (LH1160) to obtain MATa and MATα strains with the BIM1 insertion allele (LH1156
and LH1157). These haploids were mated to create a homozygous diploid (LH1158) that was checked for complementation by
examining spore formation and germination.

Table 3. Strains used in this study

Name Genotype Source

LH175 MATa ho::LYS2 lys2 ura3 leu2 his3
trp1∆fa Huang et al. 2005

LH176 MATα ho::LYS2 lys2 ura3 leu2 his3
trp1∆fa Huang et al. 2005

LH1156 MATa ho::LYS2 lys2 ura3 leu2 his3
trp1∆fa BIM1-S334_N335insENVY This study

LH1157 MATα ho::LYS2 lys2 ura3 leu2 his3
trp1∆fa BIM1-S334_N335insENVY This study

LH1158

MATa/α ho::LYS2/ho::LYS2 lys2/lys2
ura3/ura3 leu2/leu2 his3/his3
trp1∆fa/trp1∆fa BIM1-
S334_N335insENVY/BIM1-
S334_N335insENVY

This study

LH1159
MATa ho::LYS2 lys2 ura3 leu2 his3
trp1∆fa bim1-myc:HIS5S.p. Seitz et al. 2023

LH1160
MATα ho::LYS2 lys2 ura3 leu2 his3
trp1∆fa bim1-myc:HIS5S.p. Seitz et al. 2023
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LH1161

MATa/α ho::LYS2/ho::LYS2 lys2/lys2
ura3/ura3 leu2/leu2 his3/his3
trp1∆fa/trp1∆fa bim1-
myc:HIS5S.p./bim1-myc:HIS5S.p.

Seitz et al. 2023

Table 4. Plasmids used in this study

Plasmid Descriptor Number/Name Genotype Source

Cas9 Plasmid pUB1306
CEN/ARS-URA3-pPGK1-
Cas9-2x SV40 NLS-
ptF(GAA)B-gRNA scaffold

Sawyer et al. 2018; Schlissel
and Rine 2019

ENVY Plasmid pFA6a-link-ENVY-SpHIS5 pFA6a-link-ENVY-SpHIS5 Slubowski et al. 2015

Cas9 Plasmid with BIM1
Guides pXM27

CEN/ARS-URA3-pPGK1-
Cas9-2x SV40 NLS-
ptF(GAA)B-BIM1gRNA

This study

Table 5. Primers used in this study

Name Sequences (5' to 3') Source Description

OLH2908 gactCAACAACTTGATCA
TCGACG This study

Hybridized with OLH2909 to
create a duplex containing the
gRNA targeting BIM1 for
ENVY insertion

OLH2909 aaacCGTCGATGATCAAG
TTGTTG This study

Hybridized with OLH2908 to
create a duplex containing the
gRNA targeting BIM1 for
ENVY insertion

OLH2904

ggtgctggtgctggtgct
ggtgctggtgctATGTCTAA
AGGCGAGGAATTGTTTAC
AGGT

This study
Used to amplify ENVY with
GA5 linker

OLH2905

agaaccaccaccagaacc
accaccTTTGTACAATTCGT
CCATTCCTAATGTTATACC
AGC

This study
Used to amplify ENVY with
GGGS2 linker

OLH2906

tgtgataatgcagaatga
cgaaggtgaggttggcgtga
gcGGTGCTGGTGCTGGTG
CTGG

This study
Used to amplify ENVY with
linkers and add BIM1
homology
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OLH2907

tctcaacttaaaaagttt
cttcgtcgatgatcaagttg
ttAGAACCACCACCAGAA
CCAC

This study
Used to amplify ENVY with
linkers and add BIM1
homology

OLH2599 GTACGCTCGAGTTTACCA
T This study Used to amplify BIM1 for

sequencing

OLH2600 CAAAGAGCAATACCGAA
CC This study Used to amplify BIM1 for

sequencing

OLH2601 CCTGGTCCATACCACTCA
AG This study Used to sequence BIM1

OLH2603 CGGTGGCTTCTTCATCTC
AC This study Used to sequence BIM1
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