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Abstract
There is a recent push to develop wild and non-domesticated Saccharomyces yeast strains into useful model systems for
research in ecology and evolution. Yet, the variation between species and strains in important population parameters remains
largely undescribed. Here, we investigated the relationship between two commonly used measures in microbiology to estimate
growth rate – cell density and cell count – in 23 strains across all eight Saccharomyces species. We found that the slope of this
relationship significantly differs among species and a given optical density (OD) does not translate into the same number of
cells across species. We provide a cell number calculator based on our OD measurements for each strain used in this study.
Surprisingly, we found a slightly positive relationship between cell size and the slope of the cell density-cell count
relationship. Our results show that the strain- and species-specificity of the cell density and cell count relationship should be
taken into account, for instance when running competition experiments requiring equal starting population sizes or when
estimating the fitness of strains with different genetic backgrounds in experimental evolution studies.
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Figure 1. Relationship between OD (optical density), cell count, and cell size:

A) Linear regression of cell count (obtained from flow cytometry as number of cells/μL) on optical density (obtained from
spectrophotometry as OD600) across eight Saccharomyces species. Coloured lines represent three genetically different strains
per species (except for S. jurei, where only 2 strains were available). Strain names are indicated on each species’ plot. Dotted
lines are 95% confidence intervals. B) Slopes of eight Saccharomyces species extracted from regressions of cell counts
(obtained from flow cytometry) on optical density (OD600). Slopes are averaged across strains within species and expressed as
the cell count increasing per OD600 unit. Error bars represent 95% confidence intervals from regression of all data per species.
Levels not connected by same letter are significantly different. The species’ phylogenetic relationship is shown at the bottom.
C) Images of yeast cells at 100x magnification. D) Violin plot showing the distribution of cell size (log cell area in µm2).
Average cell size per species is shown at the bottom. The darker the violin plots, the smaller cells are on average. Levels not
connected by same letter are significantly different in pairwise Tukey HSD tests after ANOVA of ‘species’ on ‘log cell area’
(F7,1710= 96.12, p < 0.001). E) Scatter plot of slopes from linear regressions of cell count (obtained from flow cytometry as
number of cells per μL) on optical density (obtained from spectrophotometry as OD600) against average cell size (log cell area
in µm2) per strain.
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Description
The genus Saccharomyces (Saccharomycetales, Ascomycota) originated ~100 million years ago facilitated by whole genome
duplication (Wolfe & Shields, 1997). It currently comprises eight genetically different species that range in divergence times
from 4 to 20M years (Borneman & Pretorius, 2014; Kellis et al., 2003; Shen et al., 2018). All species are monophyletic with
high levels of sequence collinearity (Bendixsen et al., 2021; Liti et al., 2006) but show vast genetic and ecological diversity
(Boynton & Greig, 2014). Recently, the genomic and ecological data available for all eight species (and their hybrids) have
considerably grown (Bendixsen et al., 2022), promoting yeast from a traditional laboratory model system that only included a
few clonal strains to one in which we can answer questions relevant for ecology and evolution (Stelkens & Bendixsen, 2022).
Our growing knowledge of the phenotypic and genetic diversity of wild yeasts also allows us to study important ecological
traits comparatively, across species backgrounds, alleviating limitations resulting from only including a handful of well-
characterized laboratory strains in our analyses. For instance, one ecological trait that stands out as particularly diverse
between species are their temperature preference profiles (Abrams et al., 2021; Baker et al., 2019; Gonçalves et al., 2011;
Salvadó et al., 2011; Weiss et al., 2018). Of the eight species included here, five are considered cold-tolerant (S. kudriavzevii,
S. arboricola, S. uvarum, S. eubayanus, and the recently discovered S. jurei), one species is thermo-tolerant (S. cerevisiae), and
two species are considered a thermo-generalist (S. paradoxus and S. mikatae) growing well in a broad range of temperatures
(Libkind et al., 2011; Naseeb et al., 2017; Robinson et al., 2016; Salvadó et al., 2011). Since resistance and adaptation to high
or fluctuating temperatures are an increasing research focus for climate change biology, we consider it important to better
characterise the biological features of a larger range of wild yeast strains and species before we use them as model systems.

Developing wild strains into effective systems for research and industry requires the systematic testing and measuring of
fundamental population phenotypes including their growth rates, kinetics (e.g. the length of the lag phase), and yield.
Microbial research often applies high-throughput methods to estimate population growth and fitness in environments of
interest, e.g. media containing different nutrients and stress conditions. A common technique is to measure the optical density
(OD) of microbial cultures using a spectrophotometer (‘plate reader’). Optical density measures the turbidity of liquid cultures,
which is assumed to be proportional to the cell number, i.e. the concentration of cells in the sample (Stevenson et al., 2016).
Specifically, OD is the negative log of transmittance, i.e. the fraction of light detected when passed through a cuvette or micro-
titer plate containing the microbial culture. It is typically measured at a wavelength of 600nm as this electromagnetic radiation
is thought to not cause cell damage. Calculations follow the Beer-Lambert law (Mayerhöfer et al., 2020; Swinehart, 1962),
which states that OD is proportional to the concentration of a solution. However, this law only applies to cultures with low cell
densities (typically OD600 up to 0.1). At higher densities, the light gets increasingly scattered between cells, and OD does not
increase as fast as the cell titer. Using spectrophotometry to infer population fitness has additional limitations affecting the
translation of OD into cell counts. Importantly, the method does not differentiate between dead and alive cells and the
absorption coefficient (ε) can be affected by cell size (Fukuda 2023). Different methods exist for the calibration of OD
measurements (Stevenson et al., 2016), including the use of silica microspheres, direct cell counting with microscopy, and
colony counting in serial dilutions on agar plates (Beal et al., 2020). But the most efficient, high-throughput method is flow
cytometry, which uses laser-based detection of individual cells to allow for accurate cell count estimates (Boyd et al., 2000,
2006; Jahan-Tigh et al., 2012).

Here, we explore the variation in the relationship between OD measures from spectrophotometry and cell counts from flow
cytometry, across all eight Saccharomyces yeast species. To also test for variation within species, we used three strains per
species (except for S. jurei, where only two strains were available) from different geographic and ecological origins, including
isolates from fruit, soil, rotten wood, and tree bark from Europe, Asia, North and South America, and Australia. Our aim is to
expand the knowledge base of important growth parameters of non-cerevisiae strains and to improve the biological
interpretation of population fitness data from wild, non-domesticated yeasts.

The relationship between optical density and cell count differs between species

To investigate the relationship between cell count (obtained from flow cytometry) and OD600 -value (from spectrophotometry)
across all 23 strains, we used linear regression (Figure 1A, all R2 > 0.87, p < 0.01). We found significant differences between
species in the slope of this relationship (ANOVA: F7,22 = 5.63, p = 0.0025; Figure 1B). The average slope extracted from S.
cerevisiae regressions was significantly steeper than the slopes found in S. mikatae, S. jurei, S. arboricola, and S. uvarum
(Tukey HSD, all p < 0.05), i.e. S. cerevisiae produces higher cell counts at lower OD values. The random effect ‘strain’ was
non-significant and only explained 4% of the variation in the data overall (Wald p = 0.81).

The steepness of the cell density – cell count relationship is informative for researchers conducting studies across species and
strain backgrounds. We provide a simple open-access tool to convert OD measurements into cell numbers for each of the
strains used in this study here: https://tinyurl.com/8sn2y2b4. Interestingly, the patterns in slope variation that we observed
across the genus, closely follow the phylogenetic relationship of the species, with more closely related pairs (S. cerevisiae/S
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paradoxus, S. mikatae/S. jurei, and S. eubayanus/S. uvarum) having more similar slopes (Figure 1B). This suggests that the
species- and strain-specificity of this relationship should be taken into account when setting up and interpreting results of
competitive fitness assays, or when fine-tuning cell titers and inocula of non-commercial strains for industrial applications. It
also shows the limitations of using only a single laboratory S. cerevisiae strain as a reference point when exploring the
population biology of wild strains.

Yeast species significantly differ in cell size

Variation in cell size between yeast species is expected, given the large diversity of ecological niches these species inhabit, and
has been described in S. cerevisiae as a result of temperature (Zakhartsev & Reuss, 2018) and nutrient availability (Kellogg &
Levin, 2022), affecting basic physiological functions such as protein synthesis and cell division rate (Schmoller & Skotheim,
2015; Turner et al., 2012). Indeed, we found that species significantly differed in average cell size (log cell area in µm2)
(mixed model output for fixed effect ‘species’: F7 = 14.17, p < 0.0001; Figure 1C, 1D). Overall, S. eubayanus have the
smallest (1.16 ± 0.12 log µm2) and S. cerevisiae have the largest cells (1.4 ± 0.11 log µm2, Figure 1D. S. arboricola, S.
eubayanus, and S. uvarum cells are on average significantly smaller than the cells of all other species, while S. cerevisiae and
S. paradoxus have significantly larger cells than most other species (Figure 1C). The random effect ‘strain’ explained a small
(7.1%) but significant proportion of the variance in cell size (Wald p = 0.041). Indeed, most species showed some significant
differences in cell size between strains (ANOVA for all species/t-test for S. jurei: all F/t > 3.40, all p < 0.04), except for the
three S. arboricola strains, which were more uniform in size.

Cell size explains variation in the cell density - cell count relationship

We speculated that species differences in cell size may explain variation in the steepness of the slopes extracted from cell
density - cell count regressions, because the intensity and radius of light scattering in the spectrophotometer are known to
depend on cell size, which affects the absorbance of the microbial culture (Fukuda, 2023; Stevenson et al., 2016). We expected
cell size to inversely predict the steepness of slopes, because a given optical density may result in fewer cell counts if cells are
on average larger. However, we found the opposite in our data: the steepness of strain-specific slopes extracted from cell
density - cell count regressions increased slightly with increasing strain cell size (R2 = 0.24; p = 0.0223; Figure 1E),
suggesting that at a given OD-value, strains with larger cells also produce higher cell counts.

Besides cell size, other species-specific cellular features can affect the cell count – cell density relationship. The species
investigated here are ecologically and genetically vastly divergent and likely differ in the composition of their cell wall,
determining their strength and rigidity (Brown & Esher, 2020; Nguyen et al., 1998). Wall-resident proteins have diversified
rapidly over evolutionary time in Saccharomyces as a result of gene silencing through epigenetic mechanisms and
environmentally induced expression regulation, providing adaptability to different habitats and lifestyles (Lozančić et al.,
2021; Xie & Lipke, 2010). Besides cell wall composition, the number and structure of bud scars may also affect the cell’s
refractive index (Chaudhari et al., 2012). Mother cells accumulate chitinous scar tissue from cytokinesis over their lifetime
(Powell et al., 2003) and different growth conditions (poor vs. rich media) can lead to variation in bud scar number (Lorincz &
Carter, 1979). If species vary in the average number or structure of bud scars a mother cell carries, e.g. due to heritable
differences in cell longevity or species-specific responses to nutrient availability. High flocculation results in a decrease in the
optical density (Smit et al., 1992). In this study, we used non-domesticated strains that did not show evident flocculation;
nevertheless, microscopy revealed a certain level of clumping, being more evident in S. eubayanus yHAB69 and S. paradoxus
CBS432. Future studies may investigate the impact of cell composition and bud scars on the refractive indices of cells and
how these factors may affect the translation of optical density readings into cell counts.

Methods
Selection of strains

We selected a total of 23 strains. Each of the eight Saccharomyces species is represented by three strains isolated from
different geographic locations and habitats, with the exception of the newly discovered S. jurei, for which only two strains
were available to us. We only used non-domesticated, wild-type strains that do not show flocculation or cell clumping.

Cell density and cell count measurements

We grew yeast strains from frozen glycerol stocks overnight in 5 mL of YPD liquid (Yeast Peptone Dextrose) and then
transferred 100 ul to YNB complete medium (0.67% Yeast Nitrogen Base; 2% glucose). The culture was incubated at 25°C
during 12 hours. OD600 was measured with a spectrophotometer (BioTek Epoch 2) in 96-well plates with 200 µL yeast culture
per well, in four dilutions with miliQ water (2, 2.5, 3.33, 5, 10 and 20-fold dilution) to provide a range of OD readings. Raw
OD measurements were blank-corrected. The average OD of each strain was calculated from six technical replicates per
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dilution, with three independent read-outs obtained from the plate reader. To maintain linearity between cell number and
OD600 values, OD must be within the dynamic range of equipment. We therefore used an OD600 of 0.4 as the upper limit for
cell counting.

For flow cytometry, we used the same cultures that we had prepared for the OD600 measurements, and diluted them further in
phosphate-buffered saline (PBS) with a 50X dilution factor in 96 well plates. The plate layout, i.e. the position of strains and
replicates on the 96-well plates, were identical in both the spectrophotometer and flow cytometry runs.

Linear regressions between cell density (OD from spectrophotometry) and cell count (from flow cytometry) were performed.
Goodness of fit (R2) and 95% confidence intervals were calculated and plotted along the slope in GraphPad Prism 10. Species
and strain-specific slopes were extracted as the change of Y per one unit increase in X (i.e. the cell count increasing per OD600
unit). We tested for differences between species in slopes, using ANOVA with Tukey HSD tests for pairwise comparisons in
JMP (v17.2.0). To assess how much of the variance in slope is explained by differences between strains, we applied a mixed
model using ‘species’ as fixed and ‘strain’ as random effect.

Cell size measurements

Strains were grown from frozen glycerol stocks overnight in 5 mL liquid YNB complete medium, and diluted using a 50X
dilution factor. Cell photos were taken with a compound microscope (LeicaTM) at 100X magnification connected to a DSRL
camera. Between 69 and 364 cells were measured per species (including all strains per species). Photos were processed using
the StarDist plugin for ImageJ/Fiji software, a cell detection method for microscopy images, and processed using ImageJ/Fiji’s
‘find edges’ option. We used the detection model DSB 2018 (Schmidt et al., 2018), setting the probability/score threshold to
80 and the overlap threshold to 70. Cell area was measured and log-transformed and a mixed model using ‘species’ as fixed
effect and ‘strain’ as random effect was used on cell size as a response variable in JMP (v17.2.0).

Cell count calculator

We obtained the equations from linear regression of OD and cell number of each of the 23 strains used in this study (cell
count=m*OD+b) to provide a simple, open-access conversion tool that uses OD values (x) as a predictor of cell count (y):
https://tinyurl.com/8sn2y2b4.

Reagents

Species Strain Location Reference

S. cerevisiae

NCYC 3557 Netherlands Camarasa et al., 2011

FJ7 Fujian, China Wang et al., 2012

yHAB335 Shannxi, China unknown

S. paradoxus

CBS432 Russia Bachinskaya, 2014

Y7 London, UK Cubillos et al., 2009

IFO1804 Japan Naumov et al., 1996

S. mikatae

NBRC 10996 Nagano, Japan NITE Biological Resource Center, Chiba, Japan

NBRC 11000 Iwate, Japan NITE Biological Resource Center, Chiba, Japan

CBS 8839 Japan Naumov et al., 2000

S. jurei TUM 629 Munich, Germany Hutzler et al., 2021
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NCYC 3947 Saint Auban, France Naseeb et al., 2017

S. kudriavzevii

NCYC2889 Japan Naumov et al., 2000

TJ13M05 Taiwan Naumov et al., 2013

ZP629 Portugal Sampaio & Gonçalves, 2008

S. arboricola

ZP960 New Zealand unknown

OS 351 Yunnan, China Wang & Bai, 2008

TJ14M01 Shaanxi, China Wang & Bai, 2008

S. eubayanus

CGMCC2.4973 Sichuan, China Bing et al., 2014

yHAB69 Puyehue, Argentina Eizaguirre et al., 2018

yHCT103 Ñirihuau, Argentina Eizaguirre et al., 2018

S. uvarum

X7130 Germany unknown

yHAB521 South America Sylvester et al., 2015

yHAB60 South America Eizaguirre et al., 2018
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