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Abstract
Crossover designation factors such as COSA-1 are concentrated at the specific DNA double-strand break (DSB) sites to
promote crossover formation. zim-1 mutants, which show defects in the homologous chromosome pairing of chromosomes II
and III, increase the COSA-1 foci/normal bivalent state compared to the expected value. The excess designation was
suppressed by an additional mutation in brc-1 in zim-1 mutants. We demonstrated that the number of COSA-1 foci in him-8
and zim-2 mutants, showing defects in the pairing of the X and V chromosomes, respectively, increased compared to the
expected value, and brc-1 mutation accelerated the number of COSA-1 foci in oogenesis.
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Figure 1. Deletion of BRC-1 increases the number of COSA-1 and RAD-51 foci at late pachytene in him-8 and zim-2
mutants:

(A) Representative images of GFP::COSA-1 in indicated strains. The numbers in the panels indicate the number of
GFP::COSA-1 foci. Scale bars, 5µm. (B) Graphs showing the quantification of GFP::COSA-1 foci/nucleus in the late
pachytene stage in each strain. N-value, WT = 6 gonads, 256 cells; brc-1 mutants = 10 gonads, 267 cells; him-8 mutants = 10
gonads, 272 cells; brc-1; him-8 double mutants = 9 gonads, 182 cells; zim-2 mutants = 18 gonads, 295 cells, brc-1; zim-2
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double mutants = 18 gonads, 326 cells. (C) Representative images of RAD-51 immunostaining in the gonads. Perpendicular
white lines indicate the border of each zone. Scale bars, 20 µm. (D) Illustration of the gonad divided into four zones of equal
length from the transition zone to late pachytene (zone 1, transition zone; zone 2, early pachytene; zone 3, mid-pachytene; and
zone 4, late pachytene). (E) Graphs showing the average number of RAD-51 foci per nucleus in different zones. Error bars
represent the standard error of the mean. Asterisks indicate statistical difference (*p=0.01732, **p<0.00001, two-tailed Mann-
Whitney test). N-value, WT = 3 gonads, 250, 235, 138, and 90 cells per zone. him-8 mutants = 3 gonads, 177, 206, 147, and 97
cells per zone. brc-1; him-8 mutants = 4 gonads, 264, 224, 167, and 96 cells per zone.

Description
Meiosis is a cell division process that generates haploid gametes from diploid parental cells. Crossover formation is essential
for appropriate homologous chromosome segregation of meiosis I. A single crossover event per homologous chromosome pair
is observed in wild-type Caenorhabditis elegans. The process of selecting a specific DNA double-strand break (DSB) as a
future crossover site is called crossover designation (Kleckner et al. 2003; Gray and Cohen 2016). Crossover designation
factors such as COSA-1, MSH-5, and ZHP-3 concentrate at the sites of DSBs, which are further repaired by crossover (Kelly
et al. 2000; Jantsch et al. 2004; Bhalla et al. 2008; Yokoo et al. 2012). Therefore, six COSA-1 foci are observed in the nucleus
at the late pachytene stage in the wild-type (Yokoo et al. 2012).

Homologous chromosomes begin to pair at the pairing center via pairing center-binding proteins (ZIM-1, ZIM-2, ZIM-3, and
HIM-8) during the leptotene-zygotene transition (Phillips et al. 2005; Phillips and Dernburg 2006). The homologous pairing of
chromosomes II and III is impaired in zim-1 mutants (Phillips and Dernburg 2006). Although zim-1 mutants are expected to
have four COSA-1 foci per nucleus, an average of 6.12 COSA-1 foci are observed in these mutants (Li et al. 2018). The
mutation of brc-1, which is a homolog of human breast cancer gene 1 (BRCA1) (Futreal et al. 1994; Miki et al. 1994; Boulton
et al. 2004), suppresses the increase in GFP::COSA-1 foci in brc-1; zim-1 double mutants (4.3–4.8 COSA-1 foci/nucleus) (Li
et al. 2018). In this study, we investigated whether him-8 and zim-2 mutants, in which the pairing of the X and V
chromosomes, respectively, is defective (Phillips et al. 2005; Phillips and Dernburg 2006), show an increase in COSA-1 foci
compared to the expected value (5 foci/nucleus), and whether the phenotypes were suppressed by the brc-1 mutation.

We quantified the GFP::COSA-1 foci in the late pachytene stage in the wild-type, him-8, brc-1, zim-2 single mutants, and brc-
1; him-8, brc-1; zim-2 double mutants by 3D-fluorescent microscopy. As previously shown by many groups, six GFP::COSA-
1 foci were observed in the wild-type (Figure 1A, 1B). If a single crossover event was hypothesized to occur per homologous
chromosome pair, then we would expect to observe five GFP::COSA-1 foci/nucleus in him-8 mutants with unpaired X
chromosomes and in zim-2 mutants with unpaired chromosome V. However, in addition to five foci of GFP::COSA-1/nucleus,
we observed that 30.5% and 65.4% of cells had more than six foci of GFP::COSA-1 in him-8 and zim-2 mutants, respectively
(Figure 1A, 1B). This phenotype was similar to that observed in zim-1 mutants (Li et al. 2018). These data suggest that the
interchromosomal effect causes excess crossover in a normal pair of homologous chromosomes if crossover formation does
not occur in one or two sets of unpaired chromosomes during C. elegans oocyte meiosis (Herman and Kari 1989; Carlton et al.
2006; Li et al. 2018). A similar increase in crossover formation between normal chromosome pairs has been observed during
Drosophila female meiosis when chromosomal rearrangements (heterozygous inversions or translocations) are present in the
cell (Sturtevant 1919; Sturtevant 1921).

Furthermore, we examined whether the brc-1 mutation suppressed the number of COSA-1 foci in a him-8 and zim-2
backgrounds. Similar to the wild-type, 97.4% of cells showed six GFP::COSA-1 foci in brc-1 mutants (Figure 1A, 1B).
GFP::COSA-1 foci were further increased in brc-1; him-8 and brc-1; zim-2 double mutants compared to him-8 and zim-2
single mutants. A total of 62.1% and 86.5% of cells had more than six foci of GFP::COSA-1 in brc-1; him-8 and brc-1; zim-2
double mutants, respectively (p<0.00001; Mann-Whitney U test, comparison with each single mutant). These results suggest
that BRC-1 suppresses the excess of COSA-1 foci in the him-8 and zim-2 mutant backgrounds.

One of the major roles of BRC-1 is to stabilize RAD-51 filaments when crossover formation is impaired (Janisiw et al. 2018;
Li et al. 2018). RAD-51 levels in pachytene are elevated in him-8 and zim-1 mutants compared to those in the wild-type
(Carlton et al. 2006; Li et al. 2018). Removal of BRC-1 in zim-1 mutants results in a “dark zone” of RAD-51 in mid to late
pachytene in which the accumulation of RAD-51 foci are suppressed (Li et al. 2018). To examine whether BRC-1 promotes
RAD-51 filament stability in him-8 mutants, we compared RAD-51 levels in four individual zones from the first cell of the
transition zone to the end of late pachytene in the wild-type, him-8, and brc-1; him-8 double mutants (Figure 1C, 1D, 1E).
Similar to a previous study, the levels of RAD-51 foci were elevated in all pachytene stages (zones 2, 3, and 4) in him-8
mutants compared with the wild-type (Carlton et al. 2006) (Figure 1C, 1E). The RAD-51 levels were decreased to 81% in
mid-pachytene (zone 3) in brc-1; him-8 double mutants compared to him-8 single mutants (p<0.0001); however, obvious
RAD-51 dark zone was not observed in brc-1; him-8 double mutants. Most RAD-51 foci remain in the late pachytene stage
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(zone 4) in brc-1; him-8 double mutants compared with him-8 single mutants (p<0.0001). These results suggest that the
contribution of BRC-1 to RAD-51 filament stability at mid-pachytene in him-8 mutants was not as high as that in the zim-1
mutant.

We observed an excess number of GFP::COSA-1 foci in the him-8 and zim-2 single mutants compared with the expected value
of the five autosome pairs. These findings are consistent with those of previous studies, which demonstrated that crossover
formation increases in autosomes during oogenesis in him-8 mutants (Herman and Kari 1989; Carlton et al. 2006). These data
suggest that interchromosomal effects occur in him-8 and zim-2 mutants, similar to zim-1 mutants (Li et al. 2018).

The phenotypes of brc-1; him-8 (zim-2) and brc-1; zim-1 differed during oogenesis. The brc-1 mutation suppresses the
formation of COSA-1 foci in zim-1 mutants (Li et al. 2018), whereas the brc-1 mutation enhanced the formation of COSA-1
foci in him-8 and zim-2 mutants in the present study. A RAD-51 dark zone was observed in brc-1; zim-1 double mutants (Li et
al. 2018), whereas in brc-1; him-8 double mutants, a slight decrease in RAD-51 levels, but no clear RAD-51 dark zone, was
observed. These observations suggest that the function of BRC-1 in the formation of COSA-1 foci and the processing
(removal/stabilization) of RAD-51 may be regulated differently according to the number of chromosome pairs involved in
oogenesis. Furthermore, COSA-1 foci formation is differentially regulated during oogenesis and male spermatogenesis (Li et
al. 2020). The single X chromosome condition in wild-type, him-8 mutant, and brc-1; him-8 double mutant males did not
increase the number of COSA-1 foci compared with the hypothesized number of five COSA-1 foci (Li et al. 2020). In contrast
to oogenesis, brc-1; zim-1 males demonstrated enhanced formation of COSA-1 foci compared to zim-1 single mutants (Li et
al. 2020). Further research is required to explore the sex-specific regulation of crossover designs under pairing defect
conditions.

Methods
Fixation and immunostaining:

Worms expressing GFP::COSA-1 (post L4 22–24 h) were dissected using a scalpel. For dissection, 30 µL of 15 mM sodium
azide solution was placed on a cover glass, followed by approximately 20 worms. After removing 15 µL of the sodium azide
solution, 15 µL of 2% Paraformaldehyde (PFA) was added, mixed to a final concentration of 1% PFA and left for 5 min to fix.
After removing 15 µL of the mixture, the sample was sandwiched in a slide glass. The slide was placed at –80°C for 5 min.
After removing the cover glass by cracking it with a razor blade, it was fixed again in ice-cold methanol (–20°C) for 1 min.
Immunostaining was performed as previously described (Saito et al. 2009). The primary and secondary antibodies used in this
study were rabbit anti-RAD-51 antibody ( (Das et al. 2022), 1:3,000) and goat FITC-conjugated anti-rabbit antibody (Jackson
ImmunoResearch, 1:200), respectively. The sample was then washed with phosphate-buffered saline with Tween 20 for 5 min
for three times, mounted with 8 µL VECTASHIELD with 4',6-diamidino-2-phenylindole (Vector laboratories, Burlingame,
California, USA), and the cover glass was shielded by nail polish.

Imaging:

Images were obtained using an all-in-one fluorescence microscope (BZ-X800; KEYENCE, Osaka, Japan) equipped with a
Plan Apochromat 100x objective (NA1.45; BZ-PA100; KEYENCE). Approximately 30–40 Z-stack images of germline nuclei
were captured at intervals of 0.2 µm. Green fluorescence was detected using a GFP filter (excitation, 470/40 nm; emission,
525/50 nm; dichroism, 495 nm; OP-87763; KEYENCE, Osaka, Japan). The BZ-X analysis software (BZ -H4A) and a 3D
application (BZ-H4R) were used for the analysis.

Reagents
Strains:

Strain Genotype Available from

N2 Caenorhabditis elegans wild-type CGC

TTS65 brc-1(tm1145) III NBRP

TTS185 him-8(tm611) IV NBRP

TTS272 zim-2(tm574) IV NBRP, CGC
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TTS186 brc-1(tm1145) III; him-8(tm611) IV Saito lab

TTS321 brc-1(tm1145) III; zim-2(tm574) IV Saito lab

AV630 meIs8[pie-1promoter::gfp::cosa-1 + unc-119(+)] II Villeneuve lab, CGC

TTS171 meIs8[pie-1promoter::gfp::cosa-1 + unc-119(+)] II; brc-1(tm1145) III Saito lab

TTS175 meIs8[pie-1promoter::gfp::cosa-1 + unc-119(+)] II; him-8(tm611) IV Saito lab

TTS320 meIs8[pie-1promoter::gfp::cosa-1 + unc-119(+)] II; zim-2(tm574) IV Saito lab

TTS174 meIs8[pie-1promoter::gfp::cosa-1 + unc-119(+)] II; brc-1(tm1145) III; him-8(tm611) IV Saito lab

TTS319 meIs8[pie-1promoter::gfp::cosa-1 + unc-119(+)] II; brc-1(tm1145) III; zim-2(tm574) IV Saito lab

After receiving the original strains, TTS65, TTS185, TTS186, TTS272, and AV630 were outcrossed six times with N2 at the
Saito Laboratory.
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