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Abstract
Gene model for the ortholog of Secreted decoy of InR (sdr) in the May 2011 (Agencourt dana_caf1/DanaCAF1) Genome
Assembly (GenBank Accession: GCA_000005115.1 ) of Drosophila ananassae. This ortholog was characterized as part
of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the
genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate
Research Experiences.
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Figure 1. Genomic neighborhood and gene model for Sdr in Drosophila ananassae:

(A) Synteny comparison of the genomic neighborhoods for Sdr in Drosophila melanogaster and D. ananassae. Thin
underlying arrows indicate the DNA strand within which the gene–Sdr–is located in D. melanogaster (top) and D.
ananassae (bottom). Thin arrows pointing to the right indicate that Sdr is on the positive (+) strand in D. ananassae and
D. melanogaster. The wide gene arrows pointing in the same direction as Sdr are on the same strand relative to the thin
underlying arrows, while wide gene arrows pointing in the opposite direction of Sdr are on the opposite strand relative to
the thin underlying arrows. Wide gene arrows in D. ananassae indicate orthology to the corresponding gene in D.
melanogaster. Gene symbols given in the D. ananassae gene arrows indicate the orthologous gene in D. melanogaster,
while the locus identifiers are specific to D. ananassae. (B) Gene Model in GEP UCSC Track Data Hub (Raney et al.,
2014). The coding-regions of Sdr in D. ananassae are displayed in the User Supplied Track (black); coding CDSs are
depicted by thick rectangles and introns by thin lines with arrows indicating the direction of transcription. Subsequent
evidence tracks include BLAT Alignments of NCBI RefSeq Genes (dark blue, alignment of Ref-Seq genes for D.
ananassae), Spaln of D. melanogaster Proteins (purple, alignment of Ref-Seq proteins from D. melanogaster), Transcripts
and Coding Regions Predicted by TransDecoder (dark green), RNA-Seq from Adult Females, Adult Males and
Wolbachia-cured Embryos (red, light blue and pink, respectively; alignment of Illumina RNA-Seq reads from D.
ananassae), and Splice Junctions Predicted by regtools using D. ananassae RNA-Seq (SRP006203, SRP007906;
PRJNA257286, PRJNA388952). Splice junctions shown have a read-depth of 13, 115-469 and 529 supporting reads in
blue, pink and brown, respectively. Three splice junctions pertaining to the first and second introns (JUNC00120512,
JUNC00120513 and JUNC00120514) appear to be on the opposite strand of the ortholog, however these splice junctions
have been confirmed in the assembly ASM1763931v2/DanaRefSeq2. (C) Dot Plot of Sdr-PA in D. melanogaster (x-
axis) vs. the orthologous peptide in D. ananassae (y-axis). Amino acid number is indicated along the left and bottom;
CDS (coding exon) number is indicated along the top and right, and CDSs are also highlighted with alternating colors.
Line breaks in the dot plot indicate mismatching amino acids at the specified location between species. A region of low
conservation in the sixth and seventh CDS is highlighted by the purple box denoted X in the dot plot. (D) Beginning of
the third CDS of all isoforms of Sdr in the D. ananassae UCSC Genome Browser, displaying supporting evidence
for the existence of a unique isoform, Sdr-PNC. Evidence tracks are identical to those in the Gene Model (Figure 1B)
with the addition of base position displayed at the top in black text and encoded amino acids in light and dark grey boxes
below. The existence of the unique isoform denoted Sdr-PNC is supported by the splice junction (JUNC00120514) shown
in blue and the presence of a canonical splice acceptor, highlighted by the green box denoted Y.
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This article reports a predicted gene model generated by undergraduate work using a structured gene model annotation
protocol defined by the Genomics Education Partnership (GEP; thegep.org) for Course-based Undergraduate Research
Experience (CURE). The following information in this box may be repeated in other articles submitted by participants
using the same GEP CURE protocol for annotating Drosophila species orthologs of Drosophila melanogaster genes in
the insulin signaling pathway.

"In this GEP CURE protocol students use web-based tools to manually annotate genes in non-model Drosophila species
based on orthology to genes in the well-annotated model organism fruitfly Drosophila melanogaster. The GEP uses
web-based tools to allow undergraduates to participate in course-based research by generating manual annotations of
genes in non-model species (Rele et al., 2023). Computational-based gene predictions in any organism are often
improved by careful manual annotation and curation, allowing for more accurate analyses of gene and genome evolution
(Mudge and Harrow 2016; Tello-Ruiz et al., 2019). These models of orthologous genes across species, such as the one
presented here, then provide a reliable basis for further evolutionary genomic analyses when made available to the
scientific community.” (Myers et al., 2024).

“The particular gene ortholog described here was characterized as part of a developing dataset to study the evolution of
the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila. The Insulin/insulin-like
growth factor signaling pathway (IIS) is a highly conserved signaling pathway in animals and is central to mediating
organismal responses to nutrients (Hietakangas and Cohen 2009; Grewal 2009).” (Myers et al., 2024).

“D. ananassae (NCBI:txid7217) is part of the melanogaster species group within the subgenus Sophophora of the genus
Drosophila (Sturtevant 1939; Bock and Wheeler 1972). It was first described by Doeschall (1858). D. ananassae is
circumtropical (Markow and O'Grady 2005; https://www.taxodros.uzh.ch, accessed 1 Feb 2023), and often associated
with human settlement (Singh 2010). It has been extensively studied as a model for its cytogenetic and genetic
characteristics, and in experimental evolution (Kikkawa 1938; Singh and Yadav 2015).” (Lawson et al., 2024).

We propose a gene model for the D. ananassae ortholog of the D. melanogaster Secreted decoy of InR (Sdr) gene. The
genomic region of the ortholog corresponds to the uncharacterized protein XP_001953561.1 (Locus ID LOC6500611) in
the May 2011 (Agencourt dana_caf1/DanaCAF1; ) Genome Assembly of D. ananassae (GCA_000005115.1; Drosophila
12 Genomes Consortium et al., 2007). This model is based on RNA-Seq data from D. ananassae (SRP006203,
SRP007906; PRJNA257286, PRJNA388952 - Graveley et al., 2011) and Sdr in D. melanogaster using FlyBase release
FB2022_04 (GCA_000001215.4; Larkin et al., 2021; Gramates et al., 2022; Jenkins et al., 2022).

Secreted decoy of InR (Sdr) was first identified as a negative regulator of insulin signaling in D. melanogaster through a
genetic screen (Okamoto et al., 2013). In Drosophila, insulin-like peptides (Ilps) are secreted ligands that bind to the
insulin receptor (InR) to activate the insulin signaling pathway (Brogiolo et al., 2001; Ikeya et al., 2002). Sdr encodes a
secreted protein that interacts with many of the Ilps, in particular Ilp3, but lacks the transmembrane and tyrosine kinase
domains of the InR, thus acting as a secreted decoy (Okamoto et al., 2013). Mutants lacking Sdr develop into fertile adults
that are larger due to increased insulin signaling and subsequent growth during larval stages (Okamoto et al., 2013;
Millington et al., 2021). In the adult fly, Sdr is expressed in the surface glia covering the nervous system and is required
for the maintenance of the blood-brain barrier and the blood-retina barrier (Kim et al., 2023).

Synteny

The reference gene, Sdr, occurs on chromosome 3R in D. melanogaster and is flanked upstream by Ribosomal protein S5b
(RpS5b) and Vacuolar H+ ATPase PPA1 subunit 1 (VhaPPA1-1) and downstream by CG14861 and Ribosomal protein
L10Aa (Rpl10Aa). The tblastn search of D. melanogaster Sdr-PA (query) against the D. ananassae (GenBank Accession:
GCA_000005115.1) Genome Assembly (database) placed the putative ortholog of Sdr within scaffold scaffold_13340
(CH902617.1) at locus LOC6500611 (XP_001953561.1)— with an E-value of 0.0 and a percent identity of 69.38%.
Furthermore, the putative ortholog is flanked upstream by LOC6499957 (XP_001953559.1) and LOC6499956
(XP_001953560.1), which correspond to RpS5b and VhaPPA1-1 in D. melanogaster (E-value: 7e-155 and 3e-146;
identity: 90.87% and 97.64%, respectively, as determined by blastp; Figure 1A, Altschul et al., 1990). The putative
ortholog of Sdr is flanked downstream by LOC6500612 (XP_001953563.1) and LOC6500613 (XP_001953564.1), which
correspond to CG14861 and Rpl10Aa in D. melanogaster (E-value: 1e-82 and 3e-11; identity: 43.96% and 56.36%,
respectively, as determined by blastp). The putative ortholog assignment for Sdr in D. ananassae is supported by the
following evidence: The genes surrounding the Sdr ortholog are orthologous to the genes at the same locus in D.
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melanogaster and local synteny is completely conserved, supported by results generated from blastp, so we conclude that
LOC6500611 is the correct ortholog of Sdr in D. ananassae (Figure 1A).

Protein Model

Sdr in D. ananassae has three mRNA isoforms: Sdr-RA, Sdr-RB, and Sdr-RNC, which differs from Sdr-RA and Sdr-RB by
the length of its third CDS (Figure 1B). mRNA isoforms (Sdr-RA, Sdr-RB and Sdr-RNC) contain seven CDSs each.
Relative to the ortholog in D. melanogaster, the CDS number and protein isoform count are conserved, apart from the
existence of the novel isoform Sdr-PNC in D. ananassae. The sequence of Sdr-PA in D. ananassae has 69.38% identity
(E-value: 0.0) with the protein-coding isoform Sdr-PA in D. melanogaster, as determined by blastp (Figure 1C). Box X in
purple encloses a region of low conservation in the sixth and seventh CDS of the ortholog displayed in the dot plot (Figure
1C). Coordinates of this curated gene model are stored by NCBI at GenBank accessions BK064543, BK064544, and
BK064545. These data are also archived in the CaltechDATA repository (see “Extended Data” section below).

Special characteristics of the protein model

Novel isoform (Sdr-PNC) in D. ananassae:

Sdr contains one unique protein coding isoform encoded in D. melanogaster, by Sdr-RA and Sdr-RB, both of which are
conserved in D. ananassae. A second unique isoform, denoted Sdr-PNC, appears to be present in the target species,
differing only from Sdr-RA and Sdr-RB by the length of its third CDS. The existence of isoform Sdr-PNC is supported by
the presence of a canonical splice acceptor (highlighted by the green box Y), Transcripts and Coding Regions Predicted by
TransDecoder and the splice junction (JUNC00120514) shown in blue, with a read-depth of 13 (Figure 1D).

Methods
Detailed methods including algorithms, database versions, and citations for the complete annotation process can be found
in Rele et al. (2023). Briefly, students use the GEP instance of the UCSC Genome Browser v.435
(https://gander.wustl.edu; Kent WJ et al., 2002; Navarro Gonzalez et al., 2021) to examine the genomic neighborhood of
their reference IIS gene in the D. melanogaster genome assembly (Aug. 2014; BDGP Release 6 + ISO1 MT/dm6).
Students then retrieve the protein sequence for the D. melanogaster reference gene for a given isoform and run it using
tblastn against their target Drosophila species genome assembly on the NCBI BLAST server
(https://blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al., 1990) to identify potential orthologs. To validate the potential
ortholog, students compare the local genomic neighborhood of their potential ortholog with the genomic neighborhood of
their reference gene in D. melanogaster. This local synteny analysis includes at minimum the two upstream and
downstream genes relative to their putative ortholog. They also explore other sets of genomic evidence using multiple
alignment tracks in the Genome Browser, including BLAT alignments of RefSeq Genes, Spaln alignment of D.
melanogaster proteins, multiple gene prediction tracks (e.g., GeMoMa, Geneid, Augustus), and modENCODE RNA-Seq
from the target species. Detailed explanation of how these lines of genomic evidenced are leveraged by students in gene
model development are described in Rele et al. (2023). Genomic structure information (e.g., CDSs, intron-exon number
and boundaries, number of isoforms) for the D. melanogaster reference gene is retrieved through the Gene Record Finder
(https://gander.wustl.edu/~wilson/dmelgenerecord/index.html; Rele et al., 2023). Approximate splice sites within the
target gene are determined using tblastn using the CDSs from the D. melanogaster reference gene. Coordinates of CDSs
are then refined by examining aligned modENCODE RNA-Seq data, and by applying paradigms of molecular biology
such as identifying canonical splice site sequences and ensuring the maintenance of an open reading frame across
hypothesized splice sites. Students then confirm the biological validity of their target gene model using the Gene Model
Checker (https://gander.wustl.edu/~wilson/genechecker/index.html; Rele et al., 2023), which compares the structure and
translated sequence from their hypothesized target gene model against the D. melanogaster reference gene model. At least
two independent models for a gene are generated by students under mentorship of their faculty course instructors. Those
models are then reconciled by a third independent researcher mentored by the project leaders to produce the final model.
Note: comparison of 5' and 3' UTR sequence information is not included in this GEP CURE protocol (Gruys et al., 2025).

Acknowledgements: We would like to thank Wilson Leung for developing and maintaining the technological
infrastructure that was used to create this gene model. Thank you to FlyBase for providing the definitive database for
Drosophila melanogaster gene models.

Extended Data
Description: A GFF, FASTA, and PEP of the model. Resource Type: Model. File: DanaCAF1_Sdr.zip. DOI:
10.22002/2e54s-eyd40
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