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Abstract
Mitochondrial DNA (mtDNA) replication and transcription are essential for cellular energy metabolism. It has been suggested
that pentatricopeptide repeat (PPR) proteins regulate various aspects of mitochondrial RNA metabolism, including
transcription, processing, maturation and stability, and protein synthesis. However, an in vivo requirement of PPR proteins in
RNA metabolism has not been fully examined. In this paper, we focus on the Drosophila melanogaster homolog of PPR
domain 3 (PTCD3), encoded by the CG4679 gene. A loss-of-function mutant of PTCD3 is lethal during the second instar. In
addition, mutants exhibit reduced expression of a group of genes related to mitochondrial function and ribosome biogenesis,
and conversely, they show up-regulated expression of neuronal development-related genes. These results suggest that PTCD3
has important functions in relation to mtDNA and is essential for development.
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Figure 1. Phenotypes of PTCD3 mutant animals:

(A) Genomic structure of PTCD3KG31.
 Genomic structures of PTCD3 (CG4679) loci of the wild type and knockout (PTCD3KG31) strains. Gray and white boxes

indicate the coding sequence and untranslated regions, respectively. Arrows indicate orientations of the gene. In the
PTCD3KG31 allele, there is a 1145-bp deletion in the PTCD3 gene region and a transposon is inserted there.

 (B) Survival rate and developmental progression of PTCD3 knockout mutants.
 The survival rate and developmental progression of control (PTCD3KG31/CyO act-GFP, n=74, top panel) and PTCD3

knockout mutants (PTCD3KG31/PTCD3KG31, n=69, bottom panel). 
 (C) Genetic rescue of PTCD3 knockout mutants by PTCD3 overexpression in the whole organism and the prothoracic

gland.
 Numbers of PTCD3KG31/PTCD3KG31 animals that reached adulthood were scored. PTCD3 was driven by tubP-GAL4 and the

phm-GAL4#22 driver.
 (D) Gene ontology enrichment analysis in PTCD3 knockout mutants.

 Significantly enriched gene ontology (GO) terms of down-regulated (top panel) and up-regulated genes (bottom panel) in
PTCD3 knockout mutants (PTCD3KG31/PTCD3KG31) compared to control (PTCD3KG31/+) are listed in order along with
adjusted p-values. Asterisks represent GO classifications related to ribosome biogenesis, mitochondrial gene expression, and
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neuronal development. Numbers in brackets indicate the total number of applicable genes. Ontology was set to biological
process. All terms with adjusted p-values <0.05 (Fisher's exact test) and |fold change| >2 are displayed.

Description
Mitochondrial DNA (mtDNA) replication and transcription are crucial to cellular energy metabolism. De-regulation of
mitochondrial genome retention and gene expression disrupts cellular energy metabolism and is associated with various
human diseases (Wallace 2005, Chen et al. 2019). Mitochondrial RNA polymerase is a single subunit RNA polymerase
responsible for mitochondrial transcription and contains a pentatricopeptide repeat (PPR) motif at its N terminus. PPR is a
denatured motif consisting of 35 amino acids, frequently tandemly repeated (Schmitz-Linneweber and Small 2008). PPR
proteins are characterized as sequence-specific RNA-binding proteins involved in organellar transcription, RNA processing
and stability, and translation (Rovira and Smith 2019, Manna 2015). Mammals have only seven PPR domain proteins, all of
which are located in mitochondria and which regulate various aspects of mitochondrial RNA metabolism, including
transcription, processing, maturation and stability, and protein synthesis (Rackham and Filipovska 2012). Nevertheless, an in
vivo requirement of PPR proteins in RNA metabolism remains unclear.

Drosophila melanogaster shares with humans the same set of genes regulating mtDNA replication and transcription.
Moreover, Drosophila and humans have similar general structure and organization of mtDNA (Gustafsson et al. 2016, Garesse
1988). Therefore, Drosophila has been considered an attractive model for studying mtDNA maintenance and associated
human diseases (Garesse and Kaguni 2005, Sánchez-Martínez et al. 2006). Recently, it was reported that the PPR domain of
Drosophila mitochondrial RNA polymerase has exoribonuclease activity that is essential to synthesize short RNA
oligonucleotides, so as to initiate DNA replication (Liu et al. 2022). Here, we focused on another PPR protein, an ortholog of
mammalian PPR Domain 3 (PTCD3), encoded by the CG4679 locus in Drosophila (FlyBase:
https://flybase.org/reports/FBgn0033816.html FB2023_04) (Gramates et al. 2022). In mammalian cells, PTCD3 binds to the
small subunit of the mitochondrial ribosome and 12S rRNA. Knockdown and overexpression of PTCD3 in 143B human
osteosarcoma cells revealed that PTCD3 is not involved in RNA processing or stability, whereas it regulates mitochondrial
protein translation and activity of complexes III and IV, modulating mitochondrial respiration (Davies et al. 2009, Lightowlers
and Chrzanowska-Lightowlers 2013).

Since the in vivo functional importance of PTCD3 has not yet been examined in Drosophila, we generated a PTCD3 loss-of-
function allele using an imprecise P-element mobilization (See Methods for more details). We succeeded in isolating one
mutant allele, PTCD3KG31, which had a large deletion in the N-terminal region, including the start codon of the coding region
(Figure A).

Embryos homozygous for PTCD3KG31 completed embryogenesis, hatched normally, and showed no obvious morphological
defects after hatching. However, PTCD3KG31 homozygotes arrested development during the first or second instar, and even
≥120 h after hatching (hAH), never molted into third instars (Figure B, bottom). Eventually, all PTCD3KG31 homozygous
animals died, retaining second instar morphology. In contrast, most control PTCD3KG31/CyO act-GFP heterozygous animals
became pupae (Figure B, top). These results suggest that PTCD3 is necessary for larval development in Drosophila.

We next examined whether the larval arrest and lethality phenotype of PTCD3KG31 mutants were certainly due to the loss of
PTCD3. Ubiquitous overexpression of PTCD3 using tubP-GAL4 rescued the larval arrest phenotype of PTCD3KG31

homozygotes, and some of the animals developed into adults (Figure C). This result demonstrates that the developmental
arrest phenotype of PTCD3KG31 mutant is due exclusively to loss of PTCD3 function and that PTCD3 is essential for
Drosophila development.

In previous studies, a potential link between mitochondrial gene expression and the steroid biosynthetic pathway was
suggested (Llorens et al. 2015, Jacobs et al. 2020). In Drosophila, the insect steroid hormone, ecdysteroid, regulates onset of
larval molting and pupariation (Kamiyama and Niwa 2022, Yamanaka 2021). Since mammalian PTCD3 functions in
mitochondrial gene expression and the PTCD3KG31 mutant phenotype closely resembles the defective phenotype of
ecdysteroid signaling-related genes, we assumed that PTCD3 might be important in the prothoracic gland (PG), which is the
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site of ecdysteroid biosynthesis. However, overexpression of PTCD3 in the PG using phm-GAL4#22 did not rescue the larval
arrest phenotype of PTCD3KG31 homozygotes (Figure C).

Finally, we performed an RNA-sequencing analysis of PTCD3KG31 mutants to determine whether PTCD3 is involved in
mitochondrial gene expression in Drosophila, as with mammalian PTCD3. We found down- and up-regulated genes associated
with specific gene ontology (GO) terms in PTCD3KG31 mutants, including ribosome biogenesis (Figure D, top) and neuronal
development (Figure D, bottom). Importantly, genes classified as mitochondrial gene expression by GO enrichment analysis
were significantly down-regulated genes in PTCD3KG31 mutants, which is consistent with the function of PTCD3 expected
from mammalian cells.

In both mice and humans, PTCD3 loss-of-function mutants exhibit defects in mitochondrial translational and mitochondrial
respiratory systems, neurodevelopmental defects, and early lethality (International Mouse Phenotyping Consortium:
https://www.mousephenotype.org/data/genes/MGI:1917206 Data release 19.1) (Groza et al. 2023, Borna et al. 2019). In
addition, human PTCD3 is associated with Leigh syndrome or Leigh-like symptoms (Borna et al. 2019, Finsterer et al. 2019).
Given that the Drosophila PTCD3 mutation is lethal in early larval stages and has defects in gene expression related to
mitochondrial function and neuronal development, our data support the idea that the function of Drosophila PTCD3 is very
similar to that of mammalian PTCD3. Thus, the Drosophila PTCD3 mutant may potentially be used as a model for pathology
of Leigh syndrome or Leigh-like symptoms.

Methods
Fly husbandry and stocks

 Flies were raised on fly food (5.5 g agar, 100 g glucose, 40 g dry yeast, 90 g corn flour, 3 mL propionic acid, and 3.5 mL 10%
butyl p-hydroxybenzoate (in 70% ethanol) per liter) in 12/12 h light/dark conditions at 25 °C. w1118 was used as the wild-type
(control) strain. The tubP-GAL4 (stock numbers #5138) strain was obtained from the Bloomington Drosophila Stock Center
(BDSC). phm-GAL4#22 was a generous gift from Michael B. O'Connor (University of Minnesota, USA) (Ono et al. 2006).

Generation of PTCD3KG31 allele
 The loss-of-function strain PTCD3KG31 was isolated by P-element imprecise excision as previously described (Robertson et

al. 1988). The fly strain P{SUPor-P}CG4679KG09310 has a P-element insertion at the 5´ untranslated region of CG4679
(PTCD3). The strain was crossed with CyO Δ2-3 flies carrying a P-element transposase to induce remobilization of the P-
element. We isogenized each P-element-excision line, obtained genomic DNA from each line, and then checked whether each
line had a large deletion spanning the PTCD3 coding region, using PCR with genomic DNA and the primers, CG4688jump-F2
and CG4688jump-R3. We eventually isolated PTCD3KG31, which has a 1,145 bp deletion spanning part of the 5´ untranslated
region and the coding region of PTCD3 (Figure A).

Generation of a UAS-PTCD3 transgenic strain

To generate overexpression vectors of PTCD3, specific primers pENTER-CG4679-F and pENTER-CG4679stop-R were used
for PCR with KOD Plus Neo (TOYOBO) to amplify the coding sequence (CDS) of PTCD3. Template cDNAs were reverse
transcribed using total RNA of D. melanogaster Oregon R embryos (0 to 13 h after hatching) with Prime Script Reverse
Transcriptase (Takara). The amplified CDS region of PTCD3 was ligated into a pENTR/D-TOPO plasmid (Thermo Fisher
Scientific). The pENTR/D-TOPO plasmid with PTCD3 CDS was then subjected to Gateway cloning technology, by which the
plasmid was mixed with a destination vector pWALIUM10-roe (DRSC/TRiP Functional Genomics Resources & DRSC-
BTRR; RRID:DGRC_1471), a phiC31 integrase system-based UAS vector (Perkins et al. 2015), and LR Clonase II Enzyme
Mix (Thermo Fisher Scientific). The Gateway reaction was constructed in UAS-PTCD3. Transformants with the UAS-
PTCD3/pWALIUM10-roe vector and a attP40 strain (Markstein et al. 2008) were established by BestGene, Inc.

Scoring of developmental progression of PTCD3 mutants
 Eggs were laid on grape plates with yeast pastes at 25°C for 4 h. First instar larvae were transferred into a single vial with

standard cornmeal food (30 animals per vial). Vials were prepared at least 3 independently. Every 24 h, developmental stages
were scored by tracheal morphology, as previously described (Niwa et al. 2010).
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Genetic rescue experiments of PTCD3 mutants by PTCD3 overexpression
 The fly line PTCD3KG31, UAS- PTCD3/CyO was crossed with PTCD3KG31/CyO, tubP-GAL4/TM6 or PTCD3KG31/CyO, phm-

GAL4#22/TM6. Eggs were laid on standard agar-cornmeal medium at 25°C for 24 h. After adults eclosed from all observed
pupae, numbers of adults were scored based on the presence of CyO and TM6 balancers.

  

RNA-sequencing and gene ontology enrichment analysis
 RNA sequencing was performed on PTCD3KG31/PTCD3KG31 and PTCD3KG31/+ at 24 hAH. Ten larvae were collected and

homogenized in RNAiso Plus (9101, TaKaRa Bio, Kusatsu, Shiga, Japan) and frozen with liquid nitrogen. Three biological
replicates in each genotype were analyzed. RNA extraction, RNA qualification, library preparation, and RNA-sequencing
were performed by Tsukuba i-Laboratory, Inc. Reads were aligned to the Drosophila melanogaster genome (BDGP6.28)with
HISAT2 2.2.1 (Cunningham et al. 2022, Kim et al. 2019). Then, aligned reads at each gene locus were counted with Samtools
1.10 and Subread 2.0.1 (Li et al. 2009, Liao et al. 2014). Gene ontology (GO) enrichment analysis was performed on
differentially expressed genes by DESeq2 packages using iDEP 0.92 (http://bioinformatics.sdstate.edu/idep92/) (Ge et al.
2018). p-values were adjusted with the Benjamini–Hochberg false discovery rate (FDR). RNA-sequencing transcriptional data
are available from the DNA Data Bank of Japan Sequence Read Archive (Accession number DRA016983).

Reagents

Drosophila melanogaster STRAIN GENOTYPE AVAILABLE FROM

14982 P{SUPor-P}CG4679KG09310 BDSC

8201 CyO, PBac{Δ2-3.Exel}2/amosTft BDSC

5138 tubP-GAL4 BDSC

PTCD3KG31 PTCD3KG31 This study

UAS-PTCD3 P{UAS-PTCD3}attP40 This study

phm-GAL4#22 phm-GAL4#22 M. B. O'Connor (University of Minnesota, USA)

PLASMID GENOTYPE DESCRIPTION

UAS-PTCD3/

pWALIUM10-
roe

UAS-PTCD3/

pWALIUM10-
roe

The pWALIUM10-roe plasmid carrying the PTCD3 wild-type CDS, whose expression is
under control of UAS promoter.

PRIMER SEQUENCE

CG4688jump-F2 5´-CCCGTGGTTAGCCTGATGCTG-3´

CG4688jump-R3 5´-CGAACGCCTTGAAAGTCGATCAG-3´
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pENTER-CG4679-F 5´-CACCATGTACCTCTCGCGCCAATTGAG-3´

pENTER-CG4679stop-R 5´-CTACTTATCGAGGAAACTTTCGCCTACGAG-3´
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