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Abstract
Glycerol Monolaurate (GML) is a naturally occurring fatty acid monoester with antimicrobial properties. Francisella
tularensis is an agent of bioterrorism known for its unique lipopolysaccharide structure and low immunogenicity. Here we
assessed whether exogenous GML would inhibit the growth of Francisella novicida. GML potently impeded Francisella
growth and survival in vitro. To appraise the metabolic response to infection, we used GC-MS to survey the metabolome, and
surprisingly, observed intracellular GML production following Francisella infection. Notably, the ubiquitin-like protein ISG15
was necessary for increased GML levels induced by bacterial infection, and enhanced ISG15 conjugation correlated with
GML levels following serum starvation.

Figure 1. Glycerol monolaurate (GML) inhibits Francisella novicida growth and can be produced intracellularly
following infection or serum starvation:

(A) F. novicida growth was assessed at 48 hours post-inoculation with the indicated concentrations of GML (B) F. novicida
growth with varying concentrations of GML as assessed over a time course of 24 hours, with significant inhibition of growth
observed at 5 μg/ml of GML, as indicated by a ≥3 log reduction in colony-forming units/ml compared to no-GML control. The
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mean of triplicate data is reported. (C) Metabolites were measured in Mouse Embryonic Fibroblasts (MEFs) with absent
ISG15 (isg15-/-) or enhanced ISGylation (usp18C61A/C61A) following the indicated treatment; 2 hours of amino acid starvation
and 24 hours of all other treatments. Glycerol monolaurate and its precursors are shown; n=6 biological replicates per group.
Statistical significance was assessed via two-way ANOVA and Tukey’s multiple comparisons, adjusted p-values are shown; *
≤ p=0.05, ** ≤ p=0.005, *** ≤ p=0.0005, **** ≤ p=0.0001.

Description
Glycerol monolaurate (GML) is a fatty acid monoester that has antimicrobial effects against a variety of human pathogens, and
at the same time prevents harmful inflammation on body surfaces (Li et al., 2009; Lin, 2009; Peterson & Schlievert, 2006;
Projan et al., 1994; Schlievert et al., 2018; Schlievert & Peterson, 2012; Strandberg, 2010). GML is found readily in nature in
coconut and palm oil. It is generally recognized as a safe compound by the Food And Drug Administration and is used as an
emulsifier and preservative in many food and cosmetic products (Fosdick et al., 2021; Hess et al., 2014; Luo et al., 2022;
Zhang et al., 2016). GML is not routinely found in the human body, except it is present at high concentrations in breast milk
where it exhibits both antibacterial and anti-inflammatory activity (Schlievert et al., 2019). The lauric acid side chain of GML
is optimal for its antibacterial properties since fatty acid monoesters with longer or shorter side chain length lose activity
(Kabara, 1981; Kabara, 1984; Schlievert & Peterson, 2012; Yoon et al., 2018); lauric acid is just long enough to span one-half
of the lipid bilayer. GML antibacterial activity appears to result from the dissipation of the potential difference across the
bacterial plasma membrane (Schlievert & Peterson, 2012). The bactericidal activity of GML is strongly correlated to
lipopolysaccharide (LPS) makeup, as Enterobacteriaceae are not susceptible to GML with a fully intact LPS layer (Schlievert
& Peterson, 2012). However, disruption of LPS or human pathogens without an intact LPS layer, for example, Neisseria,
Haemophilus, and Gardnerella, are susceptible to killing by GML (Schlievert & Peterson, 2012).

Our study sought to assess the role of GML in antibacterial activity against Francisella novicida, a subspecies of the category
A select agent of bioterrorism Francisella tularensis (Kingry & Petersen, 2014). Francisella has a unique LPS composition
with four acyl groups making up the Lipid A molecule instead of the six that are present in E. coli LPS (Dueñas et al., 2006;
Okan & Kasper, 2013; Vinogradov et al., 2002). It also lacks the two phosphate groups usually observed on the hydrophobic
anchor of Lipid A and instead has two hydroxyl groups (Okan & Kasper, 2013). These modifications result in evasion of Toll-
Like Receptor 4 (TLR4) stimulation and allow Francisella to replicate undetected by the immune system (Dueñas et al., 2006;
Hajjar et al., 2006). F. novicida is a zoonotic pathogen that is genetically similar to F. tularensis and is often used as a
Biosafety Level 2 model of Francisella infection due to its genetic tractability and safety for humans. F. novicida retains the
unique Lipid A structure characteristic of F. tularensis but harbors slight differences in the O-antigen and LPS core (Gunn &
Ernst, 2007; Kingry & Petersen, 2014). Although F. novicida is not pathogenic to humans, it is highly virulent in mice. The
organism stimulates Interleukin 12 (IL-12) and Tumor Necrosis Factor Alpha (TNF-α) production from mouse splenocytes at a
greater level than other Francisella subspecies such as F. tularensis Live Vaccine Strain (LVS), yet both strains have
dramatically reduced immune activation compared to that induced by the LPS of E. coli (Dreisbach et al., 2000; Kieffer et al.,
2003).

Since the bactericidal activity of GML is dependent on LPS structure in Gram-negative bacteria we hypothesized that the
modifications on the LPS of F. novicida could increase susceptibility to GML. Indeed, following a 48-hour incubation with
varying concentrations of GML we saw reduced growth starting at 1 μg/mL of GML and no growth at 10 μg/mL (Figure 1A).
We subsequently performed a time course assay and assessed the growth of F. novicida at 6- and 24-hours post-inoculation
with varying concentrations of GML. Here we observed a reduction in growth at 5 μg/mL GML as early as 6 hours (Figure
1B). However, incubation with 2.5 μg/ml of GML was insufficient to reduce F. novicida growth (Figure 1B). Altogether these
data support our hypothesis that GML could prevent the growth of F. novicida in liquid culture. Additionally, GML was
bactericidal for F. novicida at GML concentrations in the same range as required to kill other Gram-negative bacteria lacking
an intact Enterobacteriaceae LPS.

Francisella is primarily an intracellular pathogen replicating in macrophages and alveolar epithelial cells in vivo (Celli &
Zahrt, 2013; Craven et al., 2008; Hall et al., 2007; Steiner et al., 2017). Thus, we hypothesized that GML could potentially be
produced intracellularly, noting however, that up to this time, human breast milk is the only known source of GML produced
in the human body. To address this hypothesis, we assessed levels of GML and its precursors, glycerol and lauric acid, via GC-
MS in Mouse Embryonic Fibroblasts (MEFs) following either serum or amino acid starvation, or infection with either F.
novicida or a Gram-positive intracellular pathogen, L. monocytogenes (Radoshevich & Cossart, 2018). We did not observe any
biologically relevant significant changes to lauric acid during any of the conditions tested. However, we detected accumulation
of glycerol following amino-acid deprivation in wild-type cells, though not following bacterial infection. Most notably, we
observed increased GML in wild-type MEFs following F. novicida infection (Figure 1C). This indicated that epithelial cells
can produce GML in response to infection or cell stress, which was previously unknown. In comparison, we observed no
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increase in GML production following intracellular L. monocytogenes infection, even though GML has been shown as an
antibacterial agent against the pathogen (Wang & Johnson, 1992; Yoon et al., 2018). This difference could be attributed to the
unique method of hijacking host glucose, carbon sources, and lipids by each pathogen (Eisenreich et al., 2010; Grubmüller et
al., 2014; Meibom & Charbit, 2010; Ziveri et al., 2017).

We conducted the initial metabolomic study to assess the role of the interferon-induced ubiquitin-like protein, ISG15 (Perng et
al., 2018), on cellular metabolism. Our previous work suggests that ISG15 is antibacterial (Radoshevich et al., 2015) and can
modify enzymes which are critical to metabolic pathways (Zhang et al., 2019). To our surprise, the presence of ISG15 was
necessary for the production of GML in MEFs, since deletion abrogated the increase in GML following F. novicida infection
(Figure 1C). Because the cells were harvested in bulk, GML could be produced by the invading bacteria. In cells with
enhanced ISGylation (usp18C61A/C61A), induced by catalytic inactivation of the ISG15-specific protease USP18 (Ketscher et
al., 2015), we observed an accumulation of GML following serum starvation in cells (Figure 1C). This notable result indicated
that unchecked covalent modification by ISG15 could lead to an intracellular accumulation of GML following infection or
starvation.

ISG15 is emerging as a potent regulator of metabolism, especially in the liver and in adipose tissue. Infection with L.
monocytogenes provokes ISG15 modification at active sites and dimerization domains of metabolic enzymes, which could
block their function (Zhang et al., 2019). Isg15-/- mice have basal decreases in glycogen stores and decreased oxygen
consumption following Coxsackie virus infection (Kespohl et al., 2020). ISG15 modification of glycolytic enzymes in
adipocytes also reduces lactate levels and increases thermogenesis, which protects from high fat diet induced obesity (Yan et
al., 2021). In addition, ISG15 regulates lipid metabolism in bone-marrow-derived macrophages, which manifests as a
reduction of neutral lipids in its absence (Albert et al., 2022). Our data indicate that GML can be generated intracellularly and
that ISG15 regulates its production. Future work will determine how this occurs and whether it is a direct or indirect
mechanism.

Finally, our studies demonstrate for the first time that breast milk is not the only mammalian source of GML. Our findings lay
the groundwork for investigating the mechanistic consequences of GML secretion or retention in the cytosol. ISG15
conjugation has been shown to restrict exosome secretion (Villarroya-Beltri et al., 2016), which could potentially lead to the
cytosolic accumulation of GML. GML from human breast milk directly targets the membrane integrity of extracellular
bacteria (Schlievert & Peterson, 2012). By contrast, we posit that intracellular GML may be packaged into toxic lipid droplets
to target cytosolic pathogens (Bosch et al., 2020). Interestingly, ISG15 mediates the oligomerization of RNF213, a giant E3
ligase known to stabilize lipid droplets and dock on the surface of intracellular pathogens (Sugihara et al., 2019; Thery et al.,
2021). We hypothesize that this could result in the targeted trafficking of GML to bacterial surfaces thus avoiding damage to
host membranes. Overall, this study opens a new avenue for the assessment of GML as an effector of intracellular defense
mechanisms alongside its role as a natural oral or topical antibiotic.

Methods
Bacterial culture

Stock cultures of F. novicida were prepared after growth to stationary phase in Todd Hewitt (Difco Laboratories, Detroit, MI).
For growth in the presence and absence of GML, F. novicida was inoculated into new Todd Hewitt broths with initial
inoculums of 106/ml. Growth was measured by viable plate counts on Todd Hewitt agar after culturing at 37 °C with 200
revolutions per minute shaking for indicated times. GML is soluble in aqueous solutions at concentrations up to 100 µg/ml.
Thus, aqueous solutions of GML (0 to 20 µg/ml) in Todd Hewitt broths were prepared for testing of antimicrobial activity. No-
GML controls were prepared similarly except GML was omitted.

Cell Culture metabolomic sample preparation

MEFs were seeded in standard tissue culture dishes coated with 20 µg/mL human fibronectin (Corning, 354008). For amino
acid starvation, cells were washed once with PBS and fed with HBSS, calcium, and magnesium, with no phenol red (Gibco,
14025092) for 2 h. For serum starvation, cells were washed once with 1x DPBS and fed with serum-free DMEM for 24 h. For
Listeria monocytogenes infection, overnight culture of L. monocytogenes strain EGD was diluted in Brain Heart Infusion
media (BD) and grown to exponential phase (OD 0.8–1), washed three times and resuspended in serum-free DMEM at MOI of
10. A fixed volume was then added to each well. Cells were centrifuged for 1 min at 201 × g to synchronize infection. The
cells were then incubated with the bacteria for 1 h at 37 °C, 5% CO2. Following this incubation, the cells were washed with 1×
DPBS and then fed with full growth medium (with 10% fetal bovine serum) supplemented with 20 μg/ml gentamicin to kill
extracellular bacteria for an additional 23 h. For Francisella novicida infection, overnight culture of F. novicida was diluted in
BHI, pH 6.5 (BD), grown to exponential phase (OD 0.5), washed three times in serum-free DMEM, and resuspended in
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serum-free DMEM at MOI of 100. A fixed volume was then added to each well. Cells were centrifuged for 1 min at 201 × g to
synchronize infection. The cells were then incubated with the bacteria for 1 h at 37 °C, 5% CO2. Following this incubation, the
cells were washed at room temperature with 1× DPBS, and then fed with full growth medium (with 10% fetal bovine serum)
supplemented with 20 μg/ml gentamicin to kill extracellular bacteria for an additional 23 h. Untreated control cells, amino
acid-starved, serum-starved, L. monocytogenes-infected, and F. novicida-infected cells were immediately placed on ice at the
indicated time, washed twice with ice-cold PBS followed by two washes with ice-cold miliQ-H2O. Cell monolayers were snap
frozen in gaseous phase liquid nitrogen after all liquids were removed from the cells. Cells were then wrapped in parafilm and
immediately transferred to the -80 ̊C freezer for storage upon flash freezing.

GC-MS metabolomic analysis

Snap frozen cell monolayers were lyophilized before being scraped into 1 ml of ice-cold 2:2:1 acetonitrile: methanol: water
containing a mixture of labeled internal standards including citric acid (2,2,4,4-D4), succinic acid (2,2,3,3-D4), l-valine
(2,3,4,4,4,5,5,5-D8), l-glutamic acid (13C5), l-glutamine (13C5), l-lysine (13C6), l-methionine (13C5), and l-tryptophan
(13C11) obtained from Cambridge Isotope Laboratories, Inc. The resulting mixture was transferred to a microcentrifuge tube
and snap-frozen in liquid nitrogen. Frozen extraction mixtures were thawed with bath sonication, vortexed for 10 minutes, and
rotated at -20 °C for 60 minutes. Next, crude homogenates were centrifuged at 21,000 x g for 10 minutes at 4 °C, and the
resulting cleared metabolite extracts were collected. 150 µL of the metabolite extract or a pooled quality control (QC) sample
prepared by mixing equal volumes from each sample were transferred to glass autosampler vials and dried to completeness
using a SpeedVac vacuum concentrator.

Samples were prepared for GC-MS analysis by derivatization with methoxyamine (MOX) + N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA). First, dried extracts were resuspended in 30 μL of pyridine containing 11.4 mg/mL of MOX.
Samples were vortexed for 10 min and heated at 60 °C for 60 min. Next, 20 uL of MSTFA was added to the pyridine/MOX
derivatized samples. Samples were vortexed for 5 min and heated at 60 °C for 30 min.

1 μL of sample was injected into a Trace 1300 GC (Thermo) operated in split mode (split ratio: 20:1; split flow: 24 μL/min,
purge flow: 5 mL/min, Carrier mode: Constant Flow, Carrier flow rate: 1.2 mL/min). Separation was accomplished using a
standard fused silica TraceGold TG-5SilMS column (Thermo). The temperature gradient was: 80 °C for 3 min, ramped at a
rate of 20 °C/min to 280 °C and held for 8 min. Ions were detected using an ISQ-LT single quadrupole mass spectrometer
operated from 3.90 to 21.00 min in EI mode (−70eV) using select ion monitoring (SIM). The pooled QC sample was analyzed
at the beginning and at the end of the GC/MS run, as well as about every eight injections throughout. Between sample runs,
the injection syringe was washed 3 times with methanol and 3 times with pyridine. The mass spectrometer was tuned and
calibrated daily.

Acquired GC–MS data were processed using the Thermo Scientific TraceFinder (4.1 and 5.1) software. Targeted metabolites
were identified based on the University of Iowa Metabolomics Core facility standard-confirmed, in-house library defining a
target ion and at least 1 confirming ion and retention time. The NOREVA tool used the QC sample analyzed throughout the
instrument run to apply local polynomial fits to metabolite peak areas and correct for instrument drift. NOREVA corrected
data were normalized to the D4-succinate signal/sample to control for extraction, derivatization (GC), and/or loading effects.

Reagents

Food grade GML Colonial Chemical Company, South Pittsburg, TN

Bacterial strains:

Francisella novicida strain U112 available upon request

Listeria monocytogenes strain EGD available upon request

Acknowledgements: Francisella novicida strain U112 was a gift from Professor Lee-Ann Allen at the University of Missouri
School of Medicine. Listeria monocytogenes strain EGD was a gift from Professor Pascale Cossart at the Institut Pasteur.
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