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Abstract
The mitochondrial genome (mtDNA) is packaged into discrete protein-DNA complexes called nucleoids. mtDNA packaging
factor TFAM (mitochondrial transcription factor-A) promotes nucleoid compaction and is required for mtDNA replication.
Here, we investigate how changing TFAM levels affects mtDNA in the Caenorhabditis elegans germ line. We show that
increasing germline TFAM activity boosts mtDNA number and significantly increases the relative proportion of a selfish
mtDNA mutant, uaDf5. We conclude that TFAM levels must be tightly controlled to ensure appropriate mtDNA composition
in the germ line.
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Figure 1. Putative germline TFAM overexpression modulates mtDNA copy number and heteroplasmy:

(A) Schematic of strategies to increase germline TFAM levels via transgenic expression at the endogenous glh-1 locus.
Strategy (1) utilizes the viral T2A ribosomal skipping sequence: sequence encoding T2A::TFAM was inserted in frame with
the endogenous glh-1 coding sequence, resulting in the production of a single mRNA that is translated into two independent
polypeptides via ribosomal skipping of the T2A sequence. Strategy (2) utilizes the C. elegans SL2 trans-splicing recognition
sequence of the gene rla-1: sequence encoding SL2::TFAM was inserted immediately following the endogenous glh-1 stop
codon, resulting in the production of two independent mRNAs that could then be translated into two polypeptides
independently of each other. Endogenous glh-1 sequence (maroon), TFAM(hmg-5) sequence (green), T2A sequence (cyan),
SL2 trans-splicing recognition sequence [black line between glh-1 and TFAM(hmg-5)]. (B) Quantification of total mtDNA
copy number from whole L4 larvae by qPCR in wild-type, TFAM-O/E (T2A), TFAM-O/E (SL2), TFAM-GFP (rf), TFAM-O/E
(T2A); TFAM-GFP (rf), and TFAM-O/E (SL2); TFAM-GFP (rf) animals. (C) Quantification of uaDf5 heteroplasmy in uaDf5
and TFAM-O/E (T2A); uaDf5 adults. Small dots are data points from individual L4 worms in (B), and technical ddPCR
replicates in (C), from each of three color-coded biological replicates; the mean from each replicate is shown as a larger circle,
the mean of means as a horizonal line, and the S.E.M as error bars. n.s., not significant (p> 0.05), **p ≤ 0.01, **** p ≤ 0.0001,
unpaired two-tailed Student’s t-test.
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Description
The mitochondrial transcription factor-A (TFAM) plays essential roles in regulating mtDNA copy number, compacting
nucleoids, and replicating/transcribing mtDNA (Garrido et al. 2003, Lewis et al. 2016, Fu et al. 2020). Global reduction of
TFAM activity has a conserved effect on mtDNA copy number in metazoans: genetic knockdown severely reduces mtDNA
levels in mammals, fish, flies, and cell culture systems (Larsson et al. 1998, Kanki et al. 2004, Matsushima et al. 2004, Otten
et al. 2020, Wang et al. 2021). The effects of TFAM overexpression on mtDNA levels are less clear. Various studies in cell
culture demonstrate that TFAM overexpression can be both sufficient (Kanki et al. 2004, Matsushima et al. 2004), and
insufficient (Maniura-Weber et al. 2004) to drive increases in mtDNA. The situation in vivo is similar, as two independent
studies in Drosophila saw no net effect of TFAM overexpression on mtDNA levels (Matsuda et al. 2013, Cagin et al. 2015),
whereas TFAM overexpression in mice was sufficient to drive mtDNA expansion above normal levels (Ekstrand et al. 2004).
Previously, we and others showed that global reduction in TFAM activity has a profound negative impact on mtDNA levels in
C. elegans, as expected (Sumitani et al. 2011, Lin et al. 2016, Schwartz et al. 2022). Here we ask the converse: is germline
overexpression of the worm TFAM homolog, hmg-5, sufficient to increase mtDNA levels in vivo?

To overexpress TFAM (encoded by the hmg-5 gene) in the germ line, we used regulatory elements from the endogenous glh-1
gene, which encodes a highly expressed germline-specific protein (Marnik et al. 2019, Goudeau et al. 2021). We employed
two strategies to express untagged TFAM at the glh-1 locus: the viral 2A self-cleaving peptide system, which results in the
production of two peptides via ribosomal skipping during translation (Fig. 1A, left); and the C. elegans SL2 trans-splicing
recognition element (derived from the operonic gene rla-1), which causes the nascent transcript to be spliced into two
independently translated mRNAs (Fig. 1A, right) (Nance and Frokjaer-Jensen 2019). We used CRIPSR/Cas9 genome
engineering to insert either T2A::TFAM or SL2::TFAM at the 3’ end of the endogenous glh-1 protein coding sequence (Fig.
1A). To avoid known loss of functionality due to the presence of C-terminal tags on TFAM (Schwartz et al. 2022), we
expressed TFAM untagged. Though we did not directly test for an increase of TFAM mRNA or TFAM protein, we presumed
overexpression based on results below.

To determine the effect of overexpressing TFAM on mtDNA levels, we measured total mtDNA in whole L4 larvae by
quantitative PCR (qPCR), as ~90% of total C. elegans mtDNA is derived from the germline (Tsang and Lemire 2002, Bratic et
al. 2009). Both means of overexpressing TFAM resulted in a significant increase in mtDNA levels (~25-30%) (Fig. 1B).
Conversely, as reported previously (Schwartz et al. 2022), we found that animals homozygous for a reduction-of-function
GFP-tagged TFAM/hmg-5 allele, here referred to as TFAM-GFP (rf), had severe mtDNA copy number defects in L4 larvae
(Fig. 1B). This defect in mtDNA number could be rescued by overexpressing TFAM in the TFAM-GFP (rf) background (Fig.
1B). Together, these results demonstrate that excess TFAM is sufficient to drive an increase in mtDNA levels in the C. elegans
germ line.

We next sought to determine if increasing TFAM activity affected mtDNA quality. To accomplish this, we used a strain
containing the uaDf5 mtDNA deletion, which removes 3.1kb of the 13.8kb mitochondrial genome (Tsang and Lemire 2002).
uaDf5 deletes essential genes and therefore must exist in heteroplasmy with complementing wild-type mtDNA. Strikingly,
uaDf5 mutant mtDNAs persist stably over many generations due to the preferential replication of uaDf5 mtDNAs over wild-
type mtDNA genomes (Tsang and Lemire 2002, Gitschlag et al. 2020, Schwartz et al. 2022, Yang et al. 2022). Owing to this
selfish replicative advantage, we hypothesized that excess TFAM would increase the proportion of uaDf5 mtDNA relative to
wild-type mtDNA. Indeed, TFAM-O/E (T2A); uaDf5 adult animals contained a significantly higher percentage of mutant
mtDNAs (~70%) compared to uaDf5 controls (~60%) (Fig. 1C). This finding suggests that increasing mtDNA levels by
overexpressing TFAM favors an even further expansion of uaDf5 mutant genomes over wild-type mtDNAs compared to
controls expressing normal TFAM levels.

Methods
Worm culture and strains

C. elegans strains were maintained at 20°C on nematode growth medium plates seeded with Escherichia coli OP50 as
previously described (Brenner 1974). A list of all strains used/generated in the study is available in the Strain Table below.

Mitochondrial DNA quantification

For mtDNA copy number quantification, qPCR was performed exactly as previously described (Schwartz et al. 2022). Briefly,
single late-L4 larvae were picked into 5µL of worm lysis buffer [50 mM KCl, 10 mM Tris-HCl (pH 8.0), 2.5 mM MgCl2,
0.45% IGEPAL (Sigma I8896), and 200 µg/mL proteinase K (Invitrogen 2530049)] in PCR tubes, flash frozen at -80°C for 15
minutes, and lysed in a thermal cycler at 60°C for 1 hour followed by 15 minutes at 95°C. Larval worm lysates were diluted
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with 95 µL of nuclease-free water (Invitrogen 4387936), and exactly 8µL of diluted lysate was used in triplicate for qPCR.
Oligos targeting the mtDNA gene nd-1 [Fw: 5’- agcgtcatttattgggaagaagac -3’ ; Rv: 5’- aagcttgtgctaatcccataaatgt -3’] were
used. A standard curve using linearized plasmid containing the nd-1 sequence was run for absolute quantification, and qPCR
was performed using BioRad 2X SsoAdvanced Universal SYBR Green Supermix (BioRad 1725271) in a Roche LightCycler
480 machine as previously described (Schwartz et al. 2022).

For uaDf5 heteroplasmy measurement, 60-100 whole adult animals were pooled in 60-100µL of worm lysis buffer in a screw
cap 1.5mL microfuge tube, flash frozen at -80°C for 15 minutes, and lysed in a heating block at 60°C for 1 hour followed by
15 minutes at 95°C. Adult worm lysates were diluted 1000X and droplet digital PCR (ddPCR) quantification of uaDf5 and
WT mtDNA was performed exactly as previously described (Schwartz et al. 2022).

Plasmid construction

Plasmid pJN651 (glh-1::SL2::YFP::PH::glh-1 3'UTR) was constructed by replacing GFP in pDU92 (glh-1::SL2::GFP::glh-1
3'UTR) by Gibson assembly (Gibson et al. 2009).

CRISPR/Cas9 genome editing

CRISPR/Cas9-mediated genome editing was performed as described previously (Paix et al. 2017, Schwartz et al. 2022).
Construction of glh-1(xn127[glh-1::SL2::hmg-5]) required two steps. First, glh-1(xn81[glh-1::SL2::yfp-PH]) was generated
using pJN651 as a PCR template to amplify  SL2::yfp-PH with ~35 bps of homology for insertion at the C-terminus of
endogenous glh-1. Second, for the generation of glh-1(xn127[glh-1::SL2::hmg-5]), N2 genomic DNA was used as a PCR
template to amplify hmg-5 with ~35bp of homology to replace  yfp-PH by CRISPR at the glh-1(xn81[glh-1::SL2::yfp-PH])
locus. To generate glh-1(xn167[glh-1::T2A::hmg-5]), a single stranded oligonucleotide template was used to swap SL2 for
T2A via CRISPR at the glh-1(xn127[glh-1::SL2::hmg-5]) locus. Sequence files for all insertions are available upon request.
All gRNA sequences are found in the Sequences Table below.

Statistical analysis and reproducibility

All statistical analysis was performed using GraphPad Prism 9 software. For all data, unpaired two-tailed Student’s t-tests were
performed, and where applicable no corrections for multiple comparisons were made to avoid type II errors (Armstrong 2014).
Data in graphs are shown as Superplots (Lord et al. 2020). Three biologically independent experiments were performed for all
experiments and the arithmetic means of biological replicates were used for statistical analysis.

Reagents
Strain Table:

Strain Genotype Source Shorthand
notation

FT2168 naSi2 [mex-5p::mCherry-H2B::nos-2 3’UTR, unc-119(+)] II
Nance Lab (naSi2 transgene from
(Roy, Kahler et al. 2018)
outcrossed twice

WT in Fig. 1B

FT2278 glh-1(xn167[glh-1::T2A::hmg-5]) I; naSi2 [mex-
5p::mCherry-H2B::nos-2 3’UTR, unc-119(+)] II Nance Lab (This study) TFAM O/E

(T2A)

FT2217 glh-1(xn127[glh-1::SL2::hmg-5]) I ; naSi2 [mex-
5p::mCherry-H2B::nos-2 3’UTR, unc-119(+)] II Nance Lab (This study) TFAM O/E

(SL2)

FT2133 xnSi45 [mex-5p::mCherry-MOMA-1::nos-2 3’UTR; unc-
119(+)] II ; hmg-5(xn107[hmg-5-gfp]) IV Nance Lab (This study) TFAM-GFP (rf)

FT2326
glh-1(xn167[glh-1::T2A::hmg-5]) I; xnSi45 [mex-
5p::mCherry-MOMA-1::nos-2 3’UTR; unc-119(+)] II ; hmg-
5(xn107[hmg-5-gfp]) IV

Nance Lab (This study)
TFAM O/E
(T2A); TFAM-
GFP (rf)
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FT2285
glh-1(xn127[glh-1::SL2::hmg-5]) I ; xnSi45 [mex-
5p::mCherry-MOMA-1::nos-2 3’UTR; unc-119(+)] II; hmg-
5(xn107[hmg-5-gfp]) IV

Nance Lab (This study)
TFAM O/E
(SL2); TFAM-
GFP (rf)

FT2283 glh-1(sam24[glh-1::gfp::3Xflag]) I ; xnIs510 [ehn-
3::mCherry-PH, unc-119(+)] II ; uaDf5 / + mtDNA Nance Lab (This study) uaDf5 in Fig.

1C

FT2409 glh-1(xn167[glh-1::T2A::hmg-5]) I ; xnIs510 [ehn-
3::mCherry-PH, unc-119(+)] II; uaDf5 / + mtDNA Nance Lab (This study)

TFAM O/E
(T2A); uaDf5 in
Fig. 1C

FT1917 glh-1(xn81[glh-1::SL2::YFP-PH]) I; naSi2 [mex-5::mCherry-
H2B::nos-2 3’ UTR, unc-119(+)] II Nance Lab (This study) See methods.

Sequences Table:

Name Sequence Type/use

glh-1 C-terminus gRNA UCCCUCAAGAUGAAGAAGGC Guide RNA to insert SL2::yfp::PH at the glh-1 locus

ocrAS03 UACGAUUGAAGAAUGAGUAA Guide RNA to replace yfp::PH with hmg-5 in xn81

ocrAS04 ACUCCGGCUCCAUGGACCAG Guide RNA to replace yfp::PH with hmg-5 in xn81

ocrAS05 UUUAAUACAAGGUAACAACA Guide RNA to replace SL2 with T2A in xn127

ocrAS06 AACUUACGAUUGAAGAAUGU Guide RNA to replace SL2 with T2A in xn127
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