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Abstract

Multiple strains of Staphylococcus are resistant to antibiotics, including the well-known methicillin-resistant Staphylococcus
aureus (MRSA). We share an engineered plasmid device in Escherichia coli that lyses the disease-causing pathogen, S. aureus.
The device was engineered using BioBrick parts obtained from the International Genetically Engineered Machine foundation
(iGEM). The cI-blue-lysostaphin device consists of a temperature-sensitive promoter that is activated under physiological
fever temperatures above 35°C that drives expression of a blue chromoprotein reporter and mature truncated lysostaphin
enzyme. The functioning cI-blue-lysostaphin device was tested for optimal lysis conditions in MM294 and DH5a E. coli
chassis and across incubation temperatures ranging from 30-42°C. We conclude that the lysostaphin activity of the cI-blue-
lysostaphin device differs between chassis and increases with greater incubation temperature.



microPublication
BIOLOGY

8/1/2022 - Open Access

A)

¢l repressor gene

_ cl regulated
double terminator ~ promoter

cl repressor

protein

RBS

constitutive RBS
promoter

truncated lysostaphin
coding sequence
denatured cl

>35°C repressor protein S05050 l

lysis ‘ '
K098995 . aureus

amilCP reporter

K1357009

blue
color

®

— T
ci—blue—. control
sostaphin

D) Lysostaphin activity in DH5a chassis Lysostaphin activity ip MM294 chassis
0 ]

H
=

-
-] o
1 1

S. aureus Lysis Diameter (mm)
©
1

S. aureus Lysis Diameter (mm)

4 4-
2 2]
0 1 I 1 1 0 1 1 1 1
30 37 40 42 30 37 40 42
Temperature (°C) Temperature (°C)
E) Lysostaphin activity for DH5a and MM294 chassis
*

£ 107

E * |

- 8-

3

: 1 LT

a

2

£ 44

|

g

2 24

3

@ T T T T T 1

KARNARKARN ARN AN AN AN A
ORI ORI
o @u\ N q?u\ o @u\ " (ﬁv\

OQ‘ @* QQ‘ @@‘ 0‘2\ é@ OQ\ @é‘



microPublication
BIOLOGY
8/1/2022 - Open Access

Figure 1. Lysis of S. aureus by heat-inducible cI-blue-lysostaphin device in E. coli proceeds in a temperature-dependent
manner.

(A) cl-blue-lysostaphin device engineered from three iGEM BioBrick parts ligated together using 3A assembly. At
temperatures above 35°C, the constitutively expressed cI repressor is inactivated and unable to bind to the lambda phage pR
promoter thus allowing for expression of blue chromoprotein and lysostaphin in a temperature-dependent fashion. Image
created in BioRender. (B) Blue chromoprotein shows highest expression in the MM294 chassis and lowest expression in the
DH5a chassis at 37°C and 40°C. cI-blue-lysostaphin was transformed into 5 different E. coli chassis (DH5«, JM109, MM294,
NEB Stable, TOP10), inoculated into liquid cultures overnight and streaks of each culture were prepared for growth at 30°C to
42°C (plates shown for 37°C, 40°C). (C) Plate Lysis Assay results at 40°C demonstrate effective lysis by cI-blue-lysostaphin
containing E. coli (left, blue arrows) but no lysis by E. coli containing control (Bba_K098995 plasmid). (D) Boxplot of
lysostaphin activity of the cI-blue-lysostaphin device is greater at higher temperatures in both the DH5a (left) and MM294
(right) chassis. S. aureus was streaked as a lawn on solid LB medium and 5ul of MM294 or DH5a culture grown overnight
containing cI-blue-lysostaphin was pipetted onto the S. aureus lawn. Zones of inhibition (mm) were measured for all six spots
of each plate following 24 hours of incubation. When all three incubation temperatures for each chassis were compared, 42°C-
incubation resulted in significantly greater lysis diameter than 37°C in the DH5a chassis (N=54, 1-way ANOVA, *p < 0.05).
The cI-blue-lysostaphin device in MM294 also exhibited a significant increase of lysis activity at a 42 °C and a 40 °C -
incubation temperature compared to 37°C (N=54, 1-way ANOVA, *p < 0.05). (E) Boxplot of three separate comparisons of
lysis activity between the DH5a and MM294 chassis at different temperatures. At 37 °C and 42 °C, cI-blue-lysostaphin had
significantly better lysis activity in DH5a. N=36, Independent T-test, *p < 0.05.

Description

Staphylococcus aureus is a ubiquitous microorganism that can be found on the surface of the skin, nose, and other areas of the
body of healthy individuals (Foster 1996). S. aureus most commonly causes infection when the skin is punctured or broken,
allowing the S. aureus to enter the wound. Methicillin-resistant Staphylococcus aureus (MRSA), S. aureus that has acquired
resistance to -lactam antibiotics, is responsible for high levels of morbidity and is often spread in community and healthcare
settings (Klevens 2007). Increased prevalence of vancomycin-resistant MRSA strains in the last decade is a major public
health concern (Wu et al. 2020). The need to find alternative treatments against Staphylococcus infections is an area of great
interest. We propose an engineered plasmid device that produces a mature truncated lysostaphin enzyme that lyses S. aureus.

Lysostaphin is a monomeric zinc-containing endopeptidase that hydrolyzes bonds in the pentaglycine cross-bridge of
peptidoglycan. This creates osmotically fragile S. aureus cells favorable for lysis conditions (Trayer & Buckley 1970, Bastos
et al. 2010). The wild type lysostaphin gene has a preproenzyme that is modified extracellularly to produce mature
lysostaphin. To produce mature lysostaphin, a truncated sequence can be used where the preprolysostaphin and prolysostaphin
sequences are removed. (Sharma et al. 2005).

The use of lysostaphin over traditional methods of killing S. aureus in a clinical setting confers several advantages.
Lysostaphin is a narrow spectrum antistaphylococcal enzyme that is active against both dividing and non-dividing cells while
being capable of passing through the extracellular matrix to act against S. aureus biofilms (Jayakumar et al. 2021). Lysostaphin
is also naturally digested by human intestinal proteases with no impact on gastrointestinal microbiota (Bastos et al. 2010).
Lysostaphin is increasingly becoming a more suitable alternative to traditional S. aureus therapies and new methods are
needed to advance this field of work.

Synthetic biology is the design of biological systems for beneficial purposes, including medical applications (Endy 2005).
Given the gap in successful treatment of MRSA, we aimed to create a biological device that could effectively kill S. aureus.
Utilizing BioBrick parts from iGEM, we successfully engineered a device in E. coli that produces mature lysostaphin when
activated at physiological fever temperatures (cI-blue-lysostaphin; Figure 1A). Three BioBrick composite parts were used to
create the cI-blue-lysostaphin device. The heat-sensitive cI quad part inverter (QPI) (Bba_K048995) contains a strong

promoter that drives expression of a temperature-sensitive cI repressor. At temperatures above 35°C, the cI repressor loses
binding efficacy becoming unable to bind to the pR lambda phage promoter (“cI regulated promoter”) that has been placed
upstream of a blue chromoprotein reporter (Bba_K1357009) and truncated (mature) lysostaphin (Bba_S05050).

To first ensure accurate assembly of the device, the sequence of the cI-blue-lysostaphin plasmid was sequence verified using
Oxford Nanopore technology. The cI-blue-lysostaphin device was transformed into five different E. coli chassis and each was
screened to determine efficacy of heat-inducible expression via visualization of the blue chromoprotein reporter (Figure 1B).
MM294 and DH5a chassis were chosen for further experimentation to test their ability to lyse S. aureus in a heat-inducible
manner.
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Cultures of the MM294 and DH5a E. coli chassis containing the cI-blue-lysostaphin device were pipetted on S. aureus lawns
and after incubation at temperatures ranging from 30-42°C, lysis diameter was measured. While spotting of E. coli containing
the control plasmid (Bba_K048995) did not exhibit any lysis, effective lysis by cI-blue-lysostaphin containing E. coli was
demonstrated at 37 °C, 40 °C (Figure 1C; left, blue arrows), and 42 °C. No lysis was observed at 30 °C in either chassis.
Individually, cI-blue-lysostaphin in both DH5a and MM294 demonstrated a significant increase in lysis activity at a 42 °C-
incubation temperature compared to 37°C (*p < 0.05). The cI-blue-lysostaphin device in MM294 also exhibited a significant
increase of lysis activity at a 40°C-incubation temperature compared to 37°C (*p < 0.05) (Figure 1D). The cI-blue-lysostaphin
device in the DH5a chassis exhibited significantly greater S. aureus lysis than in the MM294 chassis at 37 °C and 42 °C
incubation temperatures (*p < 0.05) (Figure 1E).

Interestingly, although initial visualization of the intensity of the blue chromoprotein reporter suggested that cI-blue-
lysostaphin expression was greater in MM294 (Figure 1B), the results from the plate lysis assay indicate that the expression of
lysostaphin from the cI-blue-lysostaphin device in DH5a is higher than in MM294 at most temperatures studied (Figure 1D).
The explanation for these observations warrants further investigation.

cl-blue-lysostaphin did not show any lysis activity against Staphylococcus epidermidis when expressed in either E. coli chassis
(extended data). This is consistent with studies that indicate the MICqq of recombinant lysostaphin is 1000-10,000 times
higher for S. epidermidis than for S. aureus (Wu et al. 2003).

The delivery of a treatment for Staphylococcus infections such as that presented here results in a few obstacles, namely the risk
of E. coli infection. The use of the probiotic E. coli strain, Nissle 1917 (EcN) as the chassis for the cI-blue-lysostaphin
engineered plasmid would enable a safer alternative. To prevent the acquisition of undesirable mutations and hinder the risk of
infection, CRISPR-based single-chemical kill switches can be incorporated into the EcN bacterial genome (Rottinghaus et al.
2022). Presently, recombinant lysostaphin in a hydrogel or ointment can be used for superficial non implant related
Staphylococcus infections, even those involving biofilm formation (Cheleuitte-Nieves et al. 2020). Investigation for its use in
preventing implantable device-related infection is in late-stage preclinical research (Cheleuitte-Nieves et al. 2020). Intravenous
injection of microsphere-encapsulated lysostaphin was demonstrated to be effective and selective in the treatment of murine
MRSA-related lung infections (Xiuhui et al. 2021). It is evident that there is significant need for research to develop
therapeutic agents that selectively treat MRSA without the use of antibiotics. Further research is needed to evaluate the
potential of the cI-blue-lysostaphin device in the direct treatment of MRSA whether transformed into probiotic strain Nissle
1917 or adapted in another manner.

Methods
Plasmid Cloning

Plasmids containing parts BBa_K098995, BBa_S05050, BBa_K1357009 and empty backbones were obtained from iGEM
(http://parts.igem.org). Parts were ligated using 3A assembly (Shetty et al. 2011) to create the cI-blue-lysostaphin device
shown in Figure 1A. Plasmids were transformed by Zippy Transformation of Z-competent Cells (Pope & Kent 1996) in E. coli
MM294 and DH5a (Zymo Research, USA). Plasmid DNA was isolated with a ZymoPURE Plasmid Miniprep Kit (Zymo
Research, USA). The cI-blue-lysostaphin device was sequence verified (plasmidsaurus, Eugene, OR, USA) using Nanopore
sequencing on an R9.4.1 flow cell and base called using Guppy (v.6.1.5) in super-accurate (SUP) mode (Oxford Nanopore
Technologies, UK). BBa_K098995 cI QPI plasmid was used as a control.

Plate Lysis Assay

Staphylococcus aureus subsp. aureus strain NCTC 8532 was streaked as a lawn on LB plates with 1.5% agar. 5pl of a
saturated culture (grown overnight at 37 °C) of each E. coli chassis (MM294 or DH5a) containing cI-blue-lysostaphin was
pipetted onto the S. aureus lawn (n=6). Separate replicate plates were created and incubated for 24 hours at 30°C, 37°C, 40°C,
and 42 °C. Zones of inhibition (diameter of lysis in mm) were measured for all six spots of each plate. Control plate lysis
assays with E. coli chassis (MM294 or DH5a) containing BBa_K09899 only were performed. Experiments were repeated on
Staphylococcus epidermidis strain NCTC 11047. Experiments were performed in triplicate. Raw data for lysis diameters are
included as a supplementary excel file.

Statistical Analysis

A one-way between subjects ANOVA was conducted to compare the effect of temperature on cI-blue-lysostaphin lysis activity
in DH5a chassis at 37°C, 40°C and 42°C. No lysis activity was observed at 30°C, and therefore this temperature was excluded
from the statistical analysis. There was a significant effect of the temperature on lysis diameter (mm) at the p < 0.05 level [F(2,
51) = 10.276, p = 0.000178]. Post hoc comparisons using the Tukey HSD test indicated that the mean lysis diameter for the
42°C condition (M = 7.39, SD = 0.70) was significantly greater than the 37 °C condition (M = 6.39, SD = 0.61). However,
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there was no significant difference when comparing the difference in lysis diameter at the 40°C (M = 6.89, SD = 0.68) to the
37°C or 42°C condition. These results suggest that increasing the incubation temperature led to greater lysis activity of cI-
blue-lysostaphin in the DH5a chassis.

A one-way between subjects ANOVA was conducted to compare the effect of temperature on cI-blue-lysostaphin lysis activity
in the MM294 chassis at 37°C, 40°C and 42°C. No lysis activity was observed at 30°C, and therefore this temperature was
excluded from the statistical analysis. There was a significant effect of the temperature on lysis diameter (mm) at the p < 0.05
level [F(2, 51) = 13.516, p = 0.000019]. Post hoc comparisons using the Tukey HSD test indicated that the mean lysis diameter
for the 42°C condition (M = 6.67, SD = 0.69) and the 40°C condition (M = 7.00, SD = 0.84 was significantly greater than the
37°C condition (M = 5.78, SD = 0.65). However, there was no significant difference when comparing the difference in lysis
diameter at the 40°C to the 42°C condition. These results suggest that increasing the incubation temperature also led to greater
lysis activity of cI-blue-lysostaphin in the MM294 chassis.

It should be noted that because temperature must be high to see an effect, there is a point of diminishing returns as the
temperature reaches unsustainable levels for E. coli growth.

Three separate independent sample T-tests were conducted at p < 0.05 to compare the effect of chassis type on cI-blue-
lysostaphin lysis activity (mm) at different temperatures. At 37°C, cI-blue-lysostaphin had significantly better lysis activity in
DH5a (M = 6.39, SD = 0.61) compared to MM294 (M = 5.78, SD = 0.65). t(34) = 2.92, p = 0.003. At 40 °C, cI-blue-
lysostaphin did not have a significant difference in lysis activity in DH5a (M = 6.89, SD = 0.68) compared to MM294 (M =
7.00, SD = 0.84). t(34) = -0.437, p = 0.332. At 42°C, cl-blue-lysostaphin had significantly better lysis activity in DH5a (M =
7.39, SD = 0.70) compared to MM294 (M = 6.67, SD = 0.69). t(34) = 3.13, p = 0.002.

Due to cI-blue-lysostaphin becoming active at temperatures above 35°C, the experiments performed at 30°C yielded no lysis
of S. aureus as expected and were not included in the statistical analysis.

Reagents
Plasmid/Strain | Description Available From
Bba_K098995 |heat-sensitive cI quad part inverter iGEM
Bba_S05050 Truncated mature lysostaphin iGEM
Bba_K1357009 | Blue chromoprotein iGEM
Genotype: ginX44(AS) rfbC1 endAl spoT1 thiE1 hsdR17 CGSC;
MM294 ype: g P https://cgsc.biology.yale.edu/StrainRpt.php?
creC510
ID=5439
Genotype: F— ¢80lacZAM15 A(lacZYA-argF)U169 recA1 |CGSC;
DH5a endA1 hsdR17(rK—, mK+) phoA supE44 \—thi-1 gyrA96 https://cgsc.biology.yale.edu/StrainRpt.php?
relAl ID=150015
Genotype: endAl, recAl, gyrA96, thi, hsdR17 (r", my ),
JM109 relA1, supE44, A( lac-proAB), [F" traD36, proAB, Promega
lac192AM15]
Genotype: F-mcrA A(mrr-hsdRMS-mcrBC) ¢80lacZAM15
TOP10 AlacX74 recAl araD139 A(ara-leu)7697 galU galK A~ ThermoFisher
rpsL(StrR) endA1 nupG
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Genotype: F' proA+B+ lacl? A(lacZ)M15 zzf::Tn10 (TetRy/

NEB Stable A(ara-leu) 7697 araD139 fhuA AlacX74 galK16 gag:“lS el4- New England Biolabs
@®80dlacZAM15 recAl relAl endAl nupG rpsL (St™) rph
spoT1 A(mrr-hsdRMS-mcrBC)

Staphylococeus | i NCTC 11047 ATCC

epidermidis

Staphylococcus

aureus subsp.  |strain NCTC 8532 ATCC

aureus

Extended Data

Description: Plate Lysis Assay Raw Data. Resource Type: Dataset. File: Synbio data.xIsx. DOI: 10.22002/D1.20244
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