Background mutation in strain RB2126 affects the locomotion behavior of \textit{flp-1} mutants

Irini Topalidou1§

1Department of Biochemistry, University of Washington, Seattle, WA 98195

\STo whom correspondence should be addressed: it2117@gmail.com

Abstract

The FLP-1 neuropeptide is involved in locomotion, mechanosensation, and reproduction. Strain RB2126 is reported to contain the \textit{flp-1(ok2811)} mutation, a prospective null allele. Here we report that strain RB2126, in addition to \textit{flp-1(ok2811)}, also contains two additional background mutations. One of the mutations gives the animals a constitutive dauer phenotype (Daf-c), and complementation testing confirms that it is in the Daf-c gene \textit{daf-11}. The second mutation is isolated based on the fact that it partially suppresses the elevated body curvature of \textit{flp-1(ok2811)} mutants, but it remains uncloned. The updated genotype of RB2126 strain is \textit{flp-1(ok2811); daf-11(yak155); yak156}.

Figure 1. Strain RB2126 contains background mutation(s) that affect the locomotion behavior of \textit{flp-1(ok2811)} mutants: (A) Strain RB2126 (\textit{flp-1(ok2811); daf-11(yak155); yak156}) contains a background mutation in a constitutive
dauer gene. Representative photos of dauers from the RB2126 strain (Upper panel) and the daf-11(sa195) mutant strain JT195 (Lower panel) grown at room temperature (23\(^\circ\)C). (B) Strain RB2126 has background mutation(s) that reduce the deep body bends of flp-1(ok2811) mutants. Photos of worm tracks from wild type (WT), XZ2314 flp-1(ok2811), RB2126 flp-1(ok2811); daf-11(yak155); yak156, XZ2380 flp-1(ok2811); daf-11(sa195), XZ2406 flp-1(ok2811); daf-11(yak155), and XZ2394 flp-1(ok2811); yak156 strains. (C) Representative photos of young (~L3) XZ2314 flp-1(ok2811), XZ2380 flp-1(ok2811); daf-11(sa195), and XZ2406 flp-1(ok2811); daf-11(yak155) strains showing the characteristic "B"-like body posture. (D), (E), (F), (G) Quantification of the track waveform of the strains shown in Figure 1B (see Methods). The wavelength and amplitude of sinusoidal tracks in millimeters (mm) of strains N2 (WT), XZ2314 flp-1(ok2811), RB2126 flp-1(ok2811); daf-11(yak155); yak156, and XZ2394 flp-1(ok2811); yak156 strains are also shown in figures (D) and (G). *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not significant. Error bars = SEM; n= 24-45.

Description

The FLP family of neuropeptides contains at least 30 genes in *C. elegans* (Li and Kim, 2008). Some of the flp genes were found to play roles in locomotion, egg laying, and sleep, but most flp genes have unknown function (Li and Kim, 2008; Chang et al. 2015). flp-1 is one of the few flp genes whose mutations are reported to cause overt behavioral defects (Nelson et al. 1998; Hums et al. 2016; Buntschuh et al. 2018; Oranth et al. 2018). The initial flp-1 deletion alleles that were analyzed behaviorally (yn2 and yn4; Nelson et al. 1998) included a deletion of part of daf-10 (Allion and Thomas, 2003; Buntschuh et al. 2018). This resulted in some of the initial behaviors that were attributed to FLP-1 peptides being caused by loss of daf-10 activity (Buntschuh et al. 2018). Subsequent analysis of newer flp-1 deletion alleles suggests that FLP-1 peptides are involved in nose touch sensitivity, locomotion, and reproduction (Buntschuh et al. 2018).

flp-1(ok2811) is a prospective null allele (Hums et al., 2016; Buntschuh et al., 2018). We obtained strain RB2126 (Caenorhabditis Genetics Center, CGC) in order to analyze flp-1(ok2811) null mutant locomotion behavior. When the strain was grown at room temperature (23\(^\circ\)C), some animals formed noticeable dauers similar to strains containing mutations in constitutive dauer (Daf-c) genes (Hu, 2007) (Fig. 1A). To examine whether the Daf-c phenotype was because of a background mutation, strain RB2126 was outcrossed three times. This outcross resulted in the segregation of two different mutants with readily apparent phenotypes: one resulting in deep body bends and a second in the Daf-c phenotype. PCR genotyping showed that the deep body bends co-segregated with the flp-1(ok2811) deletion. The mutation causing the Daf-c phenotype was mapped to chromosome V close to the daf-11 gene and a complementation test using daf-11(sa195) (a presumed null allele of daf-11) showed that it is in daf-11 (Birnby et al. 2000). These results suggest that flp-1(ok2811) mutants exhibit elevated body curvature, and that strain RB2126 has a background mutation in daf-11. This new daf-11 allele in strain RB2126 was named yak155.

flp-1(ok2811) mutants are known to exhibit elevated body curvature (Nelson et al. 1998; Chang et al. 2015; Hums et al. 2016, Buntschuh et al. 2018). Interestingly, strain RB2126 (flp-1(ok2811); daf-11(yak155)) had significantly reduced deep body bends in comparison to strain XZZ314 (flp-1(ok2811); three times outcrossed from strain RB2126) (Fig. 1B, 1D). This suggests that either the daf-11(yak155) mutation partially suppresses the phenotype of flp-1(ok2811) or that the RB2126 strain has other background mutation(s) that affect the body curvature. To test the possibility that the reduced deep body bends of flp-1(ok2811) in RB2126 strain are due to daf-11, double mutant strain flp-1(ok2811); daf-11(sa195) was constructed, and its body curvature was examined. flp-1(ok2811); daf-11(sa195) mutants (strain XZ2380) had similar body curvature as flp-1(ok2811) mutants (strain XZZ314) (Fig. 1B-1E). In addition, larvae (L2 to L3 stage) of flp-1(ok2811) and flp-1(ok2811); daf-11(sa195) often exhibit a characteristic body posture resembling the number "8", but this posture was not observed in RB2126 larvae (Fig. 1C). This result shows that daf-11(sa195) does not affect the elevated body curvature of flp-1(ok2811) mutants, suggesting that the body curvature of the RB2126 strain may be modified by another background mutation(s) other than daf-11(yak155).

To verify the presence of additional background mutation(s), the body curvature of flp-1(ok2811); daf-11(yak155) double mutants (strain XZZ2406) and flp-1(ok2811) mutants (strain XZZ314) were compared. Body curvature in these strains was found to be similar, suggesting that strain RB2126 has at least one additional background mutation in an unknown gene that affects the body curvature of flp-1(ok2811) (Fig. 1C, 1F). In support of this, strain RB2126 was outcrossed using strain EG7765 that contains the genetic marker oxTi76 (oxTi76 contains a transposon insertion of Peft-3::GFP::H2B::tbb-2 3’UTR on chromosome VI, in a location close to the flp-1 gene) and animals of the F2 generation that were not green, and did not exhibit Daf-c or elevated body curvature were picked. This outcross resulted in the isolation of strain XZZ394 that contains the flp-1(ok2811) mutation but does not show the same extent of elevated body curvature as XZZ314 (flp-1(ok2811)) strain (Fig. 1G). This suggests that strain RB2126, besides the mutation in daf-11, contains an additional mutation that partially but significantly suppresses the flp-1(ok2811) elevated body posture. This new allele was named yak156 and the updated genotype of strain RB2126 is flp-1(ok2811); daf-11(yak155); yak156.

Methods

Request a detailed protocol.
Strain maintenance

Strains were maintained at 15˚C or room temperature (23˚C) on NGM plates with *E. coli* strain OP50 as a food source (Brenner, 1974).

Waveform quantification

First-day adult animals were placed on an OP50 plate and allowed to move forward until they had completed at least five tracks. Each animal’s tracks were imaged at 50X magnification using a Nikon SMZ745 stereoscope and an iLabCam. Worm track period and 2X amplitude were measured using the line tool in Image J. For each worm, three to five periods and amplitudes were measured. Each experiment was performed on 5-10 worms.

Statistics

P values were determined using GraphPad Prism 9.0 (GraphPad Software). Normally distributed data sets requiring multiple comparisons were analyzed by a one-way ANOVA followed by a Bonferroni test. Normally distributed pairwise data comparisons were analyzed by two-tailed unpaired t tests.

Strains

Bristol N2: wild type
EG7765: oxI76[Peft-3::GFP::H2B::tbb-2 3’UTR, unc-18(+)] IV; unc-18(md299) X
JT195: daf-11(sa195) V
JT6709: unc-42(e270) V daf-11(sa195) V
RB2126: flp-1(ok2811) IV; daf-11(yak155) V; yak156
XZ2314: flp-1(ok2811) IV [3X outcrossed from RB2126]
XZ2370: oxI76[Peft-3::GFP::H2B::tbb-2 3’UTR, unc-18(+)] IV; daf-11(yak155) V
XZ2380: flp-1(ok2811) IV; daf-11(sa195) V
XZ2394: flp-1(ok2811) IV; yak156
XZ2406: flp-1(ok2811) IV; daf-11(yak155) V

Acknowledgments: I am grateful to Michael Ailion for supporting the completion of this project in his lab, for mapping the yak155 mutation, and for comments and edits on the manuscript. Special thanks to Michael Crawford for critical reading of the manuscript. Some strains were provided by the CGC, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This work was supported by an NIH grant R01 NS109476 to Michael Ailion and Jihong Bai.

References

Funding: NIH grant R01 NS109476

Author Contributions: Irini Topalidou: Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Conceptualization.

Reviewed By: Anonymous

History: Received April 18, 2021 Revision received April 24, 2021 Accepted May 4, 2021 Published May 9, 2021

Copyright: © 2021 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Topalidou, I (2021). Background mutation in strain RB2126 affects the locomotion behavior of flp-1 mutants. microPublication Biology. https://doi.org/10.17912/micropub.biology.000393