Three alleles in the *pat-3* locus of *Caenorhabditis elegans*: mutations in the membrane-distal NPxY phosphotyrosine motif

Jacob Hanna1*, Shiva Ramani1, Teja Williams1, Ryan Anaya1, Neil Campion1, Evan Lopez1, Raj Williams1, Joe McIntire1, Nicholas Tran1, Victoria Reyna1, Jingmei Zeng1, Shailyn Miller1, Amar Pancar1, Zhongqiang Qiu1* and Myeongwoo Lee1§

1Department of Biology, Baylor University, Waco, Texas 76798, U.S.A.

§To whom correspondence should be addressed: Myeongwoo_Lee@baylor.edu

*These authors contributed equally.

Figure 1: Characterization of PAT-3 membrane distal NPxY phospho-tyrosine motif. (A) N2 hermaphrodite gonad. Arrowhead and path indicate distal tip cell (DTC) migration. Bar = 100 μm; (B) A *pat-3(kq8041)*, Y804A, gonad showing migration defect. The gonad arm made extra turns. Arrowhead and path indicate DTC migration. Bar = 50 μm; (C) Protein sequence of wild type and mutant PAT-3 cytoplasmic tail was compared to human β1 integrin. Reds are the tyrosine and mutant residues in membrane distal NPxY; D. Gonad migration and motility analyses of *pat-3* mutants.

Description

Integrin is a heterodimeric cell surface receptor for extracellular matrix proteins. *C. elegans* has two α integrin and one β integrin subunit. The β integrin PAT-3 contains two NPxY phospho-tyrosine motifs in the cytoplasmic domain (Figure 1C). The NPxY motif is known for interacting with talin and kindlins and plays essential roles in the bidirectional signaling of integrins (Hynes 2002). To investigate the role of tyrosine phosphorylation in the NPxY motifs, we mutated the tyrosine to different amino acids to mimic the physiological modifications. In this study, the membrane-distal NPxY was studied using genome editing with the CRISPR-Cas9 ribonucleoprotein complex system (Dickinson and Goldstein 2016). The membrane distal NP804VY was engineered to three different forms, such as NPVF804 (phenylalanine), NPVA804 (alanine), or NPVE804 (glutamate). The NPVF804 is to mimic the non-phosphorylatable tyrosine (Xu et al. 2010). NPVA804 is to abolish the tyrosine residue (Chen et al. 2006). NPVE804 is to mimic the phosphorylation (Qiu et al. 2019), with the expectation that three CRISPR engineered lines would display defective motility and abnormal cell migration. None of the lines, however, showed lethality or noticeable abnormal appearance, but they showed defective gonad migration (Figures 1B and 1D) and mild movement defects (Figure 1D). All alleles displayed a significant percentage of DTC migration defects (>30%) (Figure 1D). It should be noted that the DTC Mig was observed more frequently in the posterior gonad in *kq8041* (NPVA804) and *kq8042* (NPVE804), while the DTC Mig of *kq8043* (NPVF804) was equally detected in both gonad arms. All alleles showed the decrease in motility; the *kq8042* was severer than other alleles. We believe our results are useful for in vivo analysis of integrin functions and cell-matrix interactions.

Methods

Request a detailed protocol

The CRISPR-Cas9 was used to edit the *pat-3* locus to create the *kq8041*, *kq8042*, and *kq8043* mutations. The potential crRNA sequence was present in exon 8 of the *pat-3* gene covering the membrane-distal NPVY (Figure 1C). The DNA repair template spans 48 bases upstream and 38 bases downstream of the target site, tyrosine (Y804). Synonymous mutations modified many positions of codons in the crRNA target to identify the mutation. The repair DNA
templates, crRNA, tracrRNA, and Cas9 nuclease were custom made from IDT Inc., Coralville, IA. A mixture of template DNA (PAT3Y2A, PAT3Y2E, or PAT3Y2F), crRNA (ZQPAT3B), tracrRNA (cat. no. 1073190), and Cas9 protein (cat. no. 1081058) was annealed at room temperature. The mixture was micro-injected into the syncytial gonad of N2 animals (P0) with dpy-10 co-CRISPR (Paix et al. 2015; Dickinson and Goldstein 2016). F1 animals with the Dpy phenotype were isolated, which displayed the mutation in single worm PCR genotyping with mutant specific primers (PCR-R-Y2F, PCR-R-Y2E, and PCR-R-Y2A) (Jansen et al. 1997). The Non-Dpy F2 homozygote was isolated; the animal displayed the mutation-specific PCR result but showed the absence of wild-type PCR result (the wild-type specific primer, PCR-WT-R-Y2). Homozygous mutants were crossed back to N2 two times. Three CRISPR edited mutant alleles, kq8041 (NPVA), kq8042 (NPVE), and kq8043 (NPVF), were generated. Each edited line underwent phenotype analyses. Briefly, mutant animals showed DTC migration defects under a Nomarski microscopy (Lee and Cram 2009). Morphology of U-shaped gonad arms was observed in L4 or young adult stage hermaphrodites. For thrashing assays, animals were placed in 10 μl M9 drops. The number of body bending in aqueous solution was measured for 10 seconds. A Fisher’s Exact test (DTC migration) and Student t-test (motility assay) was performed to confirm the statistical significance of assay results. Nucleotide sequences of repair template, PCR primers, and crRNA in this study are listed below.

<table>
<thead>
<tr>
<th>Repair template</th>
<th>Sequence (5'-3')</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair Y804F</td>
<td>GAGAACCAATCTCACAACAGCCGCGAGCAACATTTCAAGAACCAGGTTTTTTGCAAGAAAGGCAACTAAatagtttttatcctatatatt</td>
<td>wildtype specific</td>
</tr>
<tr>
<td>Repair Y804E</td>
<td>GAGAACCAATCTCACAACAGCCGCGAGCAACATTTCAAGAACCAGGTTTTTGCAAGAAAGGCAACTAAatagtttttatcctatatatt</td>
<td>Y804F specific</td>
</tr>
<tr>
<td>Repair Y804A</td>
<td>GAGAACCAATCTCACAACAGCCGCGAGCAACATTTCAAGAACCAGGTTTTTGCAAGAAAGGCAACTAAatagtttttatcctatatatt</td>
<td>Y804E specific</td>
</tr>
</tbody>
</table>

Differentiated amino acids are italicized

<table>
<thead>
<tr>
<th>PCR primers</th>
<th>Sequence (5'-3')</th>
<th>Used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-WT-R-Y2</td>
<td>CCAGCGTATACCTGGATTITTTTA</td>
<td>wildtype specific</td>
</tr>
<tr>
<td>PCR-R-Y2F</td>
<td>GCAAAAAACCGGTTCTTTG</td>
<td>Y804F specific</td>
</tr>
<tr>
<td>PCR-R-Y2E</td>
<td>CTTCGACCGGTTCTTGT</td>
<td>Y804E specific</td>
</tr>
<tr>
<td>PAT3MCRF</td>
<td>CATGATAGATCCGAATACGC</td>
<td>sequencing Forward</td>
</tr>
<tr>
<td>PCR-R-Y2A</td>
<td>CAGCAACCGGTTCTTGT</td>
<td>Y804A specific</td>
</tr>
<tr>
<td>PAT3R3UTR</td>
<td>acaatttatgcgaaatactgtt</td>
<td>sequencing Reverse</td>
</tr>
</tbody>
</table>

crRNA sequence

ZQPAT3B 5'-TTTAAAAAACCCGATATACGC-3' TGG (PAM target)

Reagents
BU8041 par-3(kq8041), BU8042 par-3(kq8042), and BU8043 par-3(kq8043) are available upon request.

Acknowledgments: These mutant lines were created during the course of BIO 4108 Cell and Developmental Biology Lab at Baylor University.

References

Funding: Funding for BIO 4108 was provided by Baylor University.

Reviewed By: Anonymous

Copyright: © 2020 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.